• Title/Summary/Keyword: Metallic Powders

Search Result 153, Processing Time 0.023 seconds

Fabrication of Bulk Metallic Glass Composites by Mechanical Milling with Subsequent Spark Plasma Sintering Process (기계적 밀링 및 방전 플라즈마 소결 공정을 이용한 벌크 비정질 복합재의 제조)

  • Lee, Jin-Kyu;Kim, Taek-Soo;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.197-201
    • /
    • 2007
  • Bulk metallic glass (BMG) composite was fabricated by consolidation of milled metallic glass composite powders. The metallic glass composite powder was synthesized by a controlled milling process using the Cu-based metallic glass powder blended with 30 vol% Zr-based metallic glass powders. The milled composite powders showed a layered structure with three metallic phases, which is formed as a result of mechanical milling. By spark plasma sintering of milled metallic glass powders in the supercooled liquid region, a fully dense BMG composite was successfully synthesized.

Synthesis of Ni-based Bulk Metallic Glass Composites (Ni계 벌크 비정질 복합재의 제조)

  • Lee, Jin-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.297-301
    • /
    • 2008
  • The Ni-based bulk metallic glass matrix composites were fabricated by spark plasma sintering of mixture of gas-atomized metallic glass powders and ductile brass powders. The successful consolidation of metallic glass matrix composite was achieved by strong bonding between metallic glass powders due to viscous flow deformation and lower stress of ductile brass powders in the supercooled liquid state during spark plasma sintering. The composite shows some macroscopic plasticity after yielding, which was obtained by introducing a ductile second brass phase in the Ni-based metallic glass matrix.

METALLIC COATING PROTECTION ON DIELECTROMAGNETS PREPARED FROM MIXTURE OF HARD MAGNETIC POWDERS

  • Slusarek, Barbara;Wasenczuk, Andrzej
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.687-689
    • /
    • 1995
  • Our team works on mixture of hard magnetic materials. As hard magnetic material we used mixture of powders: melt-spun ribbon Nd-Fe-B, ferrite and Alnico. Their different mixtures are basic material for dielectromagnets under our investigation. Main disadvantage of dielectromagnets with Nd-Fe-B alloy powder as a component is a low corrosion resistance. Protection against corrosion is covering dielectromagnets with metallic or organic coating film. The coating film protects dielectromagnets from free particles on the surface and low resistance for mechanical stresses too. The surface of dielectromagnets prepared from mixture of powders if formed by metallic particles - powder of Nd-Fe-B and Alnico, particles of oxide - powder of ferrite and particles of resin - bonding materials. Team work on technology of laying the metallic coating on dielectromagnets prepared from mixture of mentioned powders. Papers show the results of initial investigation on metallic coating technology. It shows influence of type and used technology of the metallic coating film on magnetic properties of dielectromagnets.

  • PDF

Consolidation of Bulk Metallic Glass Composites

  • Lee, Jin-Kyu;Kim, Hwi-Jun;Kim, Taek-Soo;Shin, Seung-Yong;Bae, Jung-Chan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.848-849
    • /
    • 2006
  • Bulk metallic glass (BMG) composites combining a $Cu_{54}Ni_6Zr_{22}Ti_{18}$ matrix with brass powders or $Zr_{62}A_{l8}Ni_{13}Cu_{17}$ metallic glass powders were fabricated by spark plasma sintering. The brass powders and Zr-based metallic glass powders added for the enhancement of plasticity are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation. The BMG composites show macroscopic plasticity after yielding, and the plastic strain increased to around 2% without a decrease in strength for the composite material containing 20 vol% Zr-based amorphous powders. The proper combination of strength and plasticity in the BMG composites was obtained by introducing a second phase in the metallic glass matrix.

  • PDF

Mg-Y-Cu Bulk Metallic Glass Obtained by Mechanical Alloying and Powder Consolidation

  • Lee, P.Y.;Hsu, C.F.;Wang, C.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.950-951
    • /
    • 2006
  • [ $Mg_{55}Y_{15}Cu_{30}$ ] metallic glass powders were prepared by the mechanical alloying of pure Mg, Y, and Cu after 10 h of milling. The thermal stability of these $Mg_{55}Y_{15}Cu_{30}$ amorphous powders was investigated using the differential scanning calorimeter (DSC). $T_g$, $T_x$, and ${\Delta}T_x$ are 442 K, 478 K, and 36 K, respectively. The as-milled $Mg_{55}Y_{15}Cu_{30}$ powders were then consolidated by vacuum hot pressing into disk compacts with a diameter and thickness of 10 mm and 1 mm, respectively. This yielded bulk $Mg_{55}Y_{15}Cu_{30}$ metallic glass with nanocrystalline precipitates homogeneously embedded in a highly dense glassy matrix. The pressure applied during consolidation can enhance thermal stability and prolong the existence of amorphous phase within $Mg_{55}Y_{15}Cu_{30}$ powders.

  • PDF

Synthesis of Ni-based Metallic Glass Composite Fabricated by Spark Plasma Sintering (방전플라즈마소결을 이용한 Ni계 비정질 복합재의 제조)

  • Kim, Song Yi;Guem, Bo Kyeong;Lee, Min Ha;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.33-36
    • /
    • 2013
  • A bulk metallic glass-forming alloy, $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders was used for good commercial availability and good formability in supercooled liquid region. In this study, the Ni-based metallic glass was synthesized using by high pressure gas atomized metallic glass powders. In order to create a bulk metallic glass sample, the $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders with ball-milled Ni-based amorphous powder with 40%vol brass powder and Cu powder for 20 hours. The composite specimens were prepared by Spark Plasma Sintering for the precursor. The SPS was performed at supercooled liquid region of Ni-based metallic glass. The amorphous structure of the final sample was characterized by SEM, X-ray diffraction and DSC analysis.

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing (금속분말의 고압비틀림 성형시 나노결정화)

  • Yoon, Seung-Chae;Kwak, Eun-Jeong;Kim, Taek-Soo;Hong, Sun-Ig;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.360-363
    • /
    • 2007
  • Microstructure and microhardness of metallic powders of pure copper were studied after high pressure torsion(HPT) processing with 10 turns of die rotation and high pressure of 6 GPa. The grain size of copper decreases drastically after HPT and reaches nanometer size ranges. During HPT, the hardness of consolidates of copper powders increases with increasing the temperature of HPT processing. Examinations of the fracture surfaces indicated evidence of ductile fracture. The results proved that HPT of copper powders has a beneficial effect for homogeneous deformation with reducing grain size.

Hydrogenation of Arenes with Metallic Iridium and Rhodium Powders Prepared from Iridium(Ⅰ) and Phodium(Ⅰ)-COD Complexes under Mild Conditions

  • 진종식;이병노;문지중;송중호;박용선
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.528-533
    • /
    • 1995
  • Metallic iridium and rhodium powders prepared from the reactions of [M(COD)(PhCN)2]ClO4 (M=Ir(1), Rh(2); COD=1,5-cyclooctadiene) with hydrogen at room temperature in methylene chloride show catalytic activities for hydrogenation of arenes at room temperature under atmospheric pressure of hydrogen. Most substituents (CH3, COOH, NO2, CH2OH, CHO, OPh, OCH3, C=C, halogens and CH2Cl) on aromatic ring suppress the rate of the hydrogenation of the aromatic ring while the aromatic ring hydrogenation of phenol and 1,4-dihydroxobenzene is faster than that of benzene over these metallic powders. Hydrogenation of benzoic acid occurs only at the aromatic ring leaving the COOH group intact over iridium metal powders while benzoic acid is not hydrogenated at all over rhodium metal powders. Carbonyl, nitro, acetylenic and olefinic groups on an aromatic ring are hydrogenated prior to the aromatic ring hydrogenation. Hydrogenolysis of OH groups of phenol, benzyl alcohol and 1,4-dihydroxobenzene, and hydrodehalogenation of halobenzenes, benzyl halides and cinnamyl chloride also occur along with the hydrogenation of aromatic ring.

Fabrication of Metallic Glass/metallic Glass Composites by Spark Plasma Sintering (방전플라즈마 소결법에 의한 비정질/비정질 복합재의 제조)

  • Lee, Jin-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.405-409
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composites containing Zr-based metallic glass phase have been consolidated by spark plasma sintering using the mixture of Cu-based and Zr-based metallic glass powders in their overlapped supercooled liquid region. The Zr-based metallic glass phases are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation process. The successful consolidation of BMG composites with dual amorphous phases was corresponding to the sound viscous flow of the two kinds of metallic glass powders in their overlapped supercooled liquid region.

Solidification Behaviors of the Rapidly Solidified Metallic Powders and Development of the Powder Making Process.;Part I : Development of the Powder Making Process (급속응고된 금속분말의 응고거동 및 제조법에 관한 연구;Part I : 급속응고 제조법)

  • Kim, Jong-Yoon;Yoon, Woo-Young
    • Journal of Korea Foundry Society
    • /
    • v.15 no.2
    • /
    • pp.164-174
    • /
    • 1995
  • New metallic powder making processes, named "Centrifugal Emulsification Process(CEP)" and "Mixer and Settler(MS)" have been developed to synthesize rapid solidified metallic powders. Through CEP and MS processings, the high temperature metals as well as the low temperature alloys are manufactured. Also, the effects of rapid solidification on the undercooling, solidification rate and crystallization behaviors can be evaluated effectively through the processes. The standard deviations of the synthesized typical Pb-Sn eutectic powders are 1.63 and 1.51 for CEP and MS respectively, and the average size of the MS powders was $18{\mu}m$. The possibility of the customized not only size and shape control but microstructure control was also shown. Both of the new methods can be applied to continuous powder making processes.

  • PDF