• Title/Summary/Keyword: Metalaxyl.

Search Result 91, Processing Time 0.039 seconds

Reduction of Pesticide Residues in Field-Sprayed Leafy Vegetables by Washing and Boiling (엽채류의 세척 및 끓임에 의한 엽면살포 농약의 경감)

  • Kwon, Hye-Young;Lee, Hee-Dong;Kim, Jin-Bae;Jin, Yong-Duk;Moon, Byeong-Chul;Park, Byung-June;Son, Kyung-Ae;Kwon, Oh-Kyung;Hong, Moo-Ki
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.2
    • /
    • pp.182-187
    • /
    • 2009
  • The reduction rate of pesticide residues on spinach(bifenthrin, metalaxyl, procymidone), chard(bifenthrin, imidacloprid) and mallow(bifenthrin, chlorpyrifos, imidacloprid) were tested on each step of washing and boiling(spinach: 1, 3, 5min., chard: 3, 6, 9min., mallow: 10, 20, 30min.). The reduction rates of bifenthrin and procymidone by washing were $58{\sim}64%$ and 82%, and these were not changed significantly after boiling. In case of imidacloprid, the rates showed 43% on chard and 12% on mallow by washing, and these were highly increased to 94% after boiling. And the reduction rate of metalaxyl and chloropyrifos were 69% and 11% by washing, and $96{\sim}98%$ and $77{\sim}79%$ by boiling. Specifically we monitored the pesticide residues on both boiled vegetable and its water because there are used to cook as soup in Korea. The total residual amounts of imidacloprid and chloropyrifos were effectively removed on both boiled mallow and its water ($12%{\rightarrow}34{\sim}40%$, $11%{\rightarrow}76{\sim}79%$), however, the other tested pesticides were not changed on pesticide residues when calculated with total amounts on boiled vegetable and its water. These explained the other pesticides were just moved vegetable to water by boiling.

Genetic variation of Phytophthora infestans by RAPD analysis

  • Lee, Yun-Soo;Jeong young Song;Kim, Nam-Kyu;Nam Moon;Park, Hye-Jin;Kim, Hong-Gi
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.116.2-117
    • /
    • 2003
  • Late blight, caused by Phytophthora infestans, is one of the most destructive disease on potato and tomato cultivation. To analysis genetic diversity P. infeatans isolates were collected from potato and tomato fields in Korea. These pathogens contained both Al and A2 mating type with metalaxyl-resistant and sensitive isolates. Polymorphisms showed base on RAPD (Random Amplified Polymorphic DNA) in both potato and tomato isolates of P. infestans. Cluster analysis showed high level genetic variation in potato isolates of P. infestans than tomato isolates. P. infestans isolates were observed genetic diversity among them but not grouped among isolates related mating type and metalaxyl response. These results exhibited that P. infestans isolates showing genetic difference among them were distributed in Korea.

  • PDF

Ginseng Cultural Management and Research Update in Atlantic Canada

  • Ju, H.Y.;Asiedu, S.K.;Hong, S.C.;Gray, B.;Sampson, G.;LeBlanc, P.
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.103-108
    • /
    • 1998
  • The Canadian production of American ginseng (Panax quinquefolius L.) occurs mainly in Ontario, British Columbia and the Atlantic provinces. Although ginseng is a profitable crop, its successful production is dependent on careful consideration of cultural management f include site selection, site preparation, seed selection and handling, shading actors which and mulching, pest and nutritional management, and handling of harvested crops. Diseases of particular concern in Atlantic Canada are root rots caused by Phytopkthora cactorum, Cylindrocarpon destructans and Fusarium sp. Recently two systemic fungicides (metalaxyl and fosetylal) were registered; however, growers in Atlantic Canada have experienced metalaxyl resistance resulting from the reliance on this single compound for the control of Phytophthora sap. Current research being conducted on alternative control of these diseases will be discussed. In weed control research, 2, 4-D, MCPA, clopyralid have continued to show promise for weed contro1 at low rates. In trials to evaluate non-selective herbicides as post-senescence or pre-emergence in ginseng, glyphosate (Round-up) provided control of perennials as well as willowherb and lambsquarters. In phytoxicity trials, ginseng significantly tolerated grass herbicides, including clethodim, rimsulfuron, trakloxydim, nicosulfuron and fenoxyprop. For broadleaf herbicides, significant tolerance was shown for bromoxynil, thifensulfuron methyl, flumetulam/clopyralid, thifensulfuro/tribenuron. Disease and weed management of ginseng in Atlantic Canada will be discussed.

  • PDF

Changes of Mating Type Distribution and Fungicide-resistance of Phytophthora infestans Collected from Gangwon Province (강원지역 감자 역병균 Phytophthora infestans의 교배형 및 약제저항성 변화)

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Jeong, Kyu-Sik;Kim, Jeom-Soon;Kwon, Min;Kim, Byung-Sup;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.274-278
    • /
    • 2010
  • Potato late blight caused by Phytophthora infestans was the most constrain disease at potato cultivation areas. The mating type distribution and fungicides response of P. infestans were investigated to elucidate the changes of pathogen from Gangwon province. On the fungal isolates in 2006, 58.7% were A1 mating type and 41.3% were A2 mating type. In 2007, A1 mating type isolates increased to 93.3% and A2 mating type isolates were collected from Jinbu areas as much as 6.7%. About 234 isolates analysed for metalaxyl response, the results was resistance 73.7%, intermediate 18.8% and sensitive 7.5% in 2006. And it was resistance 59.4%, intermediate 4.0% and sensitive 36.6% in 2007. It meant that mating type distribution and fungicide response were very different over the collection sites. Minimal inhibition concentration (MIC) of dimethomorph examined with 126 isolates in 2006 and 106 isolates in 2007. MIC over $1.0\;{\mu}g/ml$ was 56.3% in 2006 and it was 3.8% in 2007. The average $EC_{50}$ value of P. infestans was $0.37\;{\mu}g/ml$ in 2006, but it decreased to $0.12\;{\mu}g/ml$ in 2007. Fungicides response and pathogenesis of P. infestans should be monitored continuously to enhance the chemical efficacy at potato fields.

Establishment of Baseline Sensitivity of Phytophthora capsici Causing Pepper Phytophthora Blight to Carboxylic Acid Amide Fungicides (Carboxylic acid amide계 살균제에 대한 고추 역병균 Phytophthora capsici의 감수성 기준 설정)

  • Kim, Jin-Ho;Kim, Joo-Hyung;Lee, Kyeong-Hee;Rho, Chang-Woo;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.456-462
    • /
    • 2010
  • Baseline sensitivity to benthiavalicarb, iprovalicarb and dimethomorph included into carboxylic acid amide (CAA) group was evaluated in 180 isolates of Phytophthora capsici over 4 years from 2005 to 2008. $EC_{50}$ (effective concentration inhibiting mycelial growth by 50%) value of benthiavalicarb ranged from $0.015{\mu}g\;mL^{-1}$ to $0.049{\mu}g\;mL^{-1}$ with a mean of $0.033{\mu}g\;mL^{-1}$. The mean values of $EC_{50}$ of iprovalicarb and dimethomorph were 0.411 (0.197 - 0.556) ${\mu}g\;mL^{-1}$ and 0.271 (0.101 - 0.798) ${\mu}g\;mL^{-1}$, respectively. Although there was no increasing tendency in $EC_{50}$of benthiavalicarb and iprovalicarb during 4 years, $EC_{50}$ of dimethomorph was increased gradually by laps of time. There was no cross-resistance between each fungicide used in this study and metalaxyl. Among fungicides included into CAA group, there was a positive correlation between benthiavalicarb and iprovalicarb, and between dimethomorp and mandipropamid.

Comparative molecular field analyses (CoMFA) on the antifungal activity against phytophthora blight fungus of 3-phenylisoxazole and 3-phenyl-2,5-dihydroisoxazol-5-one derivatives (고추 역병균에 대한 3-phenylisoxazole과 3-phenyl-2,5-dihydroisoxazol-5-one 유도체들의 살균 활성에 관한 비교 분자장 분석 (CoMFA))

  • Sung, Nack-Do;Lee, Hee-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.72-79
    • /
    • 2002
  • 3D-QSAR between fungicidal activitives ($pI_{50}$) against metalaxyl-sensitive (SPC: 95CC7105) or metalaxyl-resisitant (RPC: 95CC7303) isolate of phytophthora blight fungus (Phytophthora capsici), and a set of 3-phenylisoxazole (A) and 3-phenyl-2,5-dihydroisoxazole (B) derivatives as substrates were conducted using comparative molecular field analyses (CoMFA). The antifungal activities of (A) were generally higher than those of (B). And it is assumed that the most stable conformation of the active substrate was approximately planar from conformational search. The CoMFA models proved a good predictive ability and suggested that the electronic field of substrates were higher than hydropohobic field and steric field requirements for recognition forces of the receptor site. And the factors were strongly correlated (cross-validated $q^2>0.570$ & conventional $r^2>0.968$) with the fungicidal activitives. According to the CoMFA analyses, the selectivity factors for RPC suggested that the sterically bulky groups (C14 & C15) and electron withdrawing groups (C15 & C16) have to be introduced to the ortho, meta and para-position on the benzoyl moiety of substrates.

Evaluation of Groundwater Contamination Potential of Pesticides Using Groundwater Ubiquity Score in Jeju Island Soils (Groundwater Ubiquity Score를 이용한 제주도 토양 특성별 농약의 지하수 오염가능성 평가)

  • Hyun, Hae-Nam;Jang, Gong-Man;Oh, Sang-Sil;Chung, Jong-Bae
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.144-153
    • /
    • 2007
  • One of the most recent issues facing the pesticides regulatory process is the assessment of the potential for pesticides to leach through soil and appear in groundwater. Since Jeju island depends on a hydrogeologically vulnerable aquifer system as its principle source of drinking water, it is important to identify which pesticides are the most likely to result in groundwater contamination. The objective of this study was to assess groundwater contamination risk of 21 pesticides (12 insecticides, 6 herbicides and 3 fungicides) in Jeju soils using groundwater ubiquity score (GUS). Considering GUS estimated in 21 representative series of Jeju soils, generally herbicides showed relatively higher leaching potentials and insecticides showed lower leaching potentials. Groundwater contamination risk was higher in the order of bromacil > metolachlor > alachlor > linuron pretilachlor > butachlor for herbicides, carbofuran > ethoprophos > diazinone > dimethoate > penthoate > mecarbam > methidathion > endosulfan > fenitrothion > parathion > chlorpyrifos > terbufos for insecticides, and metalaxyl > chlorothalonil > triadimefon for fungicides. Among the tested pesticides alachlor, metolachlor, bromacil, ethoprophos and carbofuran were classified as the pesticides of very high or high groundwater contamination potential. Although the ranking of the leaching potential was essentially determined on the base of the intrinsic properties of the chemicals and environmental properties, variation of the relative groundwater contamination potentials of each pesticides in different soils were not significant. Therefore, the above ranking of groundwater contamination risk would be applied in most of Jeju soils. To lower the possibility of pesticide contamination of groundwater, the use of those pesticides classified as high or very high leaching potential should be strictly regulated in Jeju Island.

Effects of Fungicide Control of Downy Mildew (Pseudoperonospora cubensis) on Yield and Disease Management of Ridge Gourd (Luffa acutangula)

  • Deadman, M.L.;Kagadi, S.R.;Pawar, D.R.;Gadre, U.A.
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.147-151
    • /
    • 2002
  • Seven fungicides were compared for the control of downy mildew on midge gourd. All treatments had significantly lower rates of disease progress curves and disease severity levels than that of the control. The highest yields were obtained from crops treated with metalaxyl + mancozeb, fosetyl-Al, and chlorothalonil. These treatments also proved to be the most economical considering the treatment costs.