• Title/Summary/Keyword: Metal-fiber

Search Result 787, Processing Time 0.029 seconds

A Micromechanical Analysis on the Elastic Behavior in Discontinuous Metal Matrix Composites (불연속 금속복합체에서의 탄성거동에 관한 미세구조역학적 해석)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-64
    • /
    • 1997
  • A micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites was developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. By the calculation of the present model, stress concentration factor in the matrix and the composite elastic modulus were predicted accurately. Some important factors affecting stress concentrations, such as fiber volume fraction, fiber aspect ratio, end gap size, and modulus ratio, were also discussed.

  • PDF

The Characteristics of the Over-current of Shielded Cable and the Fusing Current of Carbon Fiber (탄소섬유의 용단전류 및 차폐 케이블의 과전류 특성)

  • Kim, Young-Seok;Kim, Taek-Hee;Kim, Chong-Min;Shong, Kil-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1761-1766
    • /
    • 2016
  • In this paper, we investigated the fusing current of carbon fiber and thermal properties of carbon fiber and metal shielded cable due to over-current. The fusing current value for the metal-coated carbon fiber was 5.3A in 3K, 7.4K and 13.05A in 12K. And if it exceeds 50% of the fusing current was broken with a rapid voltage rise. In the case of carbon fiber shielded cable, the temperature of the PVC sheath increased somewhat in the allowable current range. However, the temperature of PVC sheath rapidly increased to $128.1^{\circ}C$ in the 2 time allowable current range. This value is $10^{\circ}C$ higher than the temperature of PVC sheath on the metal screen cable, because the resistance of the carbon fiber is high and heat transfer rate is slow.

Combustion Characteristics of Premixed Burner for Domestic Condensing Gas Boiler Using Metal Fiber and Throttle Body (Metal Fiber와 Throttle Body를 적용한 가정용 응축보일러용 예혼합 버너의 연소특성)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.249-256
    • /
    • 2017
  • Premixed combustion has many advantages, including low CO and NOx emissions and a small combustor volume. These characteristics allow a compact design and wide application to condensing boilers with high thermal efficiencies. This study focused on the combustion characteristics in a premixed combustion burner using metal fiber and a throttle body. The results showed that a blue flame was found to be very stable at a heating load of 6,250-25,000 kcal/h when implementing the proper metal fiber, baffle plate, and throttle body. The NOx emission was less than 11 ppm under an equivalence ratio of 0.724-0.795, and the CO emission was less than 50 ppm under the same equivalence ratio. The thermal efficiency, which is a very important index when condensing a gas boiler, was observed to be above 96.3% under an equivalence ratio of 0.750.

Study on the Mechanical Behavior of Fiber Metal Laminates Using Classical Lamination Theory (고전 적층이론에 의한 섬유금속적층판의 기계적 거동 연구)

  • 노희석;최흥섭;강길호;하민수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.37-41
    • /
    • 2003
  • In this study the mechanical behaviors of fiber metal laminates (FML) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also load carrying mechanism between metal sheets and composite layers in the FML are considered.

  • PDF

Effect of the Extrusion Ratios on Fiber Breakage and Orientation in Hot Extrusion Process in Metal Matrix Composites (금속복합재료의 열간압출공정에 있어서 압출비가 섬유의 파단 및 배향에 미치는 영향)

  • Kang, C.G.;Kang, S.S.;Kim, B.H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1740-1750
    • /
    • 1993
  • The aluminar short fiber reinforced composite materials for hot extrusion were fabricated by semi-solid stirring method, and extruded at extrusion temperature $400^{\circ}C$ with various extrusion ratio. The hot extrusion load of volume fraction 15% metal matrix composites and base alloy Al7075 has been compared. The fiber length distribution, fiber breakage and fiber orientation are investiged to know the fiber behaviour in before and after hot extrusion. The tensile strength of the hot extruded billet are experimentally determined for different of extrusion ratios, and compared with theorically calculated strength.

Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading (횡방향 하중을 받는 금속모재 복합재료의 파손구조)

  • Ham, Jong-Ho;Lee, Hyeong-Il;Jo, Jong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

Fiber-optic macro-bending sensor aided by metal capillary (매크로 벤딩 측정을 위한 금속 모세관 결합 광섬유 센서)

  • 백승인;정윤찬;이병호
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.289-293
    • /
    • 2001
  • A metal capillary splice fiber-optic sensor was fabricated for use as an intensity-based macro-bending sensor. As the radius of curvature due to the macro-bending decreases, the angular misalignment of the fiber ends inside the metal capillary increases, i.e., the coupling efficiency of the fiber splice is reduced. Thus, macro-bending can be detected by the measurement of the reduction of transmitted power. The detectable range of macro-bending. was measured approximately from 20 mm to 85 mm. The center wavelengths of the fiber Bragg gratings are 1543.3 nm and 1549.5 nm, respectively. The maximum bending loss of this sensor was measured about -11.92 dB. Using this metal capillary spliced fiber sensor and fiber Bragg gratings, macro-bending detection has been demonstrated, and it is shown to have potential for multi-point macro-bending sensors. nsors.

  • PDF

INVESTIGATION OF A STRESS FIELD EVALUATED BY ELASTIC-PLASTIC ANALYSIS IN DISCONTINUOUS COMPOSITES

  • Kim, H.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.483-491
    • /
    • 2007
  • A closed form solution of a composite mechanics system is performed for the investigation of elastic-plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and matrix yielding behavior in short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.

Morphology of Metal Salt of Carboxylic Acid: Metal and Acid Dependency on Branched Round Cluster Images

  • Min Su Kang;Kwang-Jin Hwang
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.222-225
    • /
    • 2023
  • Metallic salts of C10-18 aliphatic carboxylic acids were prepared and their scanning electron microscopic images were analyzed for the morphology dependency with the metal and the carboxylic acid. Regardless of metal ion, metal salts of dicarboxylic acids showed a high crystallinity with a fiber image (SuA-Na). The aromatic dicarboxylates also represented a morphology of a rectangular-rod or board shapes (IA-Li, IA-Ba). With Na ion, most aliphatic carboxylate (MA, PA, SA) showed a fiber-like crystallinity. However, other monovalent Li, K and multivalent Mg, especially Al ion resulted a glassy-amorphous in the metallic salts of acids (MA, PA, SA). With divalent Ba and Ca ions, the metal salt of aliphatic acids expressed a branched round cluster shape as in SA-Ca, SA-Ba. Both Li and Mg ions with a similar size showed a strong morphological similarity in the metallic salts of aliphatic acids MA, PA, SA. In the case of Na and Ca ions with a similar size (98, 106 pm), both ionic salts of stearic acid gave a branching effect for a fiber or round granular image. In the case of hydroxyl-aliphatic acids (HLA, HPA, HSA), the fiber images in HLA-Na and HSA-Na was appeared about 100 nm thicker than those of nonhydroxycarboxylates (LA-Na, SA-Na). The metallic salts of unsaturated C-18 carboxylic acids (OlA, LeA and LnA) showed an amorphous glassy image due to a kinked carbon chain.

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.