• Title/Summary/Keyword: Metal wire

Search Result 497, Processing Time 0.023 seconds

AN INTRODUCTION TO SEMICONDUCTOR INITIATION OF ELECTROEXPLOSIVE DEVICES

  • Willis K. E.;Whang, D. S.;Chang, S. T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.21-26
    • /
    • 1994
  • Conventional electroexplosive devices (EED) commonly use a very small metal bridgewire to ignite explosive materials i.e. pyrotechnics, primary and secondary explosives. The use of semiconductor devices to replace “hot-wire” resistance heating elements in automotive safety systems pyrotechnic devices has been under development for several years. In a typical 1 amp/1 watt electroexplosive devices, ignition takes place a few milliseconds after a current pulse of at least 25 mJ is applied to the bridgewire. In contrast, as for a SCB devices, ignition takes place in a few tens of microseconds and only require approximately one-tenth the input energy of a conventional electroexplosive devices. Typically, when SCB device is driven by a short (20 $\mu\textrm{s}$), low energy pulse (less than 5 mJ), the SCB produces a hot plasma that ignites explosive materials. The advantages and disadvantages of this technology are strongly dependent upon the particular technology selected. To date, three distinct technologies have evolved, each of which utilizes a hot, silicon plasma as the pyrotechnic initiation element. These technologies are 1.) Heavily doped silicon as the resistive heating initiation mechanism, 2.) Tungsten enhanced silicon which utilizes a chemically vapor deposited layer of tungsten as the initiation element, and 3.) a junction diode, fabricated with standard CMOS processes, which creates the initial thermal environment by avalanche breakdown of the diode. This paper describes the three technologies, discusses the advantages and disadvantages of each as they apply to electroexplosive devises, and recommends a methodology for selection of the best device for a particular system environment. The important parameters in this analysis are: All-Fire energy, All-Fire voltage, response time, ease of integration with other semiconductor devices, cost (overall system cost), and reliability. The potential for significant cost savings by integrating several safety functions into the initiator makes this technology worthy of attention by the safety system designer.

  • PDF

Reduction of Electromagnetic Field from Wireless Power Transfer Using a Series-Parallel Resonance Circuit Topology

  • Kim, Jong-Hoon;Kim, Hong-Seok;Kim, In-Myoung;Kim, Young-Il;Ahn, Seung-Young;Kim, Ji-Seong;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2011
  • In this paper, we implemented and analyzed a wireless power transfer (WPT) system with a CSPR topology. CSPR refers to constant current source, series resonance circuit topology of a transmitting coil, parallel resonance circuit topology of a receiving coil, and pure resistive loading. The transmitting coil is coupled by a magnetic field to the receiving coil without wire. Although the electromotive force (emf) is small (about 4.5V), the voltage on load resistor is 148V, because a parallel resonance scheme was adopted for the receiving coil. The implemented WPT system is designed to be able to transfer up to 1 kW power and can operate a LED TV. Before the implementation, the EMF reduction mechanism based on the use of ferrite and a metal shield box was confirmed by an EM simulation and we found that the EMF can be suppressed dramatically by using this shield. The operating frequency of the implemented WPT system is 30.7kHz and the air gap between two coils is 150mm. The power transferred to the load resistor is 147W and the real power transfer efficiency is 66.4 %.

A Study of Optimum Shielding Gas Flow Rate in FCAW for Shipbuilding (선박조립과정의 FCAW 적용시 적정 보호가스 유량에 대한 연구)

  • Lee, Hoon-Dong;Shim, Chun-Sik;Song, Ha-Cheol;Yum, Jae-Seon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • FCAW(Flux Cored Arc Welding) is a widely used welding method in shipbuilding. It also conducts WPS(Welding Procedure Specification) requested by the classification variations of the factors which affect the quality on the welded area such as thickness of base metal, type of welding wire and shielding gas etc. which has to be satisfied. CO2 is commonly used as a shielding gas for FCAW due to the economic point of view. The amount of shielding gas is stated when classification certify WPS. However, the shielding gas is unnecessarily used at the shipyard leaning only on the welder's experience as there are classification standards for using the shielding gas. It causes production cost to rise. Also recently, CO2 is a main contributor for global warming, and large amounts of CO2 are discharged into the atmosphere during shipbuilding processes without any filtration. Therefore it was confirmed by the security of the welded area as a result of conducting the destructive and non-destructive tests with setting up the factors and the standards by using the Taguchi method. Then the FCAW shielding gas's amounts were calculated precisely when assembling a ship. It will be applied to cost reduction and prevention of environmental pollution at the shipyard.

Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I) (선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I))

  • PARK JU-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

Orthodontic bracket bonding to glazed full-contour zirconia

  • Kwak, Ji-Young;Jung, Hyo-Kyung;Choi, Il-Kyung;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Objectives: This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods: Glazed zirconia (except for the control, Zirkonzahn Prettau) disc surfaces were pre-treated: PO (control), polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z) or a silane primer (Monobond-S, S) was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S). Metal bracket-bonded specimens were stored in water for 24 hr at $37^{\circ}C$, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10). Results: Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z ($4.60{\pm}1.08MPa$) and all other groups ($13.38{\pm}2.57-15.78{\pm}2.39MPa$, p < 0.05). For AA-Z, most of the adhesive remained on the bracket. Conclusions: For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

Tunable Mechanically Formed Long-Period Fiber Gratings using Periodically Arrayed Metal Wires (금속선의 주기적인 배열을 이용하여 기계적으로 형성한 파장 가변 장주기 광섬유 격자)

  • Sohn, Kyung-Rak;Kim, Kwang-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.401-405
    • /
    • 2005
  • In this paper, we have presented mechanically formed long-period fiber gratings using periodically arrayed brass wires with a $250-{\mu}m$ diameter and realized the function of current-controlled wavelength-tuning. With the thermo-optic effect of the surrounding medium around the fiber cladding, the continuous displacement of the resonance wavelengths is achieved through the resistant heat of the wire which changes the refractive index of surrounding material. The tunability for each mode as a function of an applied electrical power is investigated. When the glycerin is used as a thermo-optic material, the measured tuning ranges of $LP_{03}$ and $LP_{04}$ within electrical power of 20 W reach to 14 nm and 48 nm, respectively. The experimental results are in good agreement with the theoretical that which is analyzed by a geometric-optics approximation.

Development of automatic assembly module for yoke parts in auto-focusing actuator (Auto-Focusing 미세부품 Yoke 조립 자동화 모듈 개발)

  • Ha, Seok-Jae;Park, Jeong-Yeon;Park, Kyu-Sub;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.55-60
    • /
    • 2019
  • Smart-phone in the recently released high-end applied to the camera module is equipped with the most features auto focusing camera module. Also, auto focusing camera module is divided into voice coil motor, encoder, and piezo according to type of motion mechanism. Auto focusing camera module is composed of voice coil motor (VCM) as an actuator and leaf spring as a guide and suspension. VCM actuator is made of magnet, yoke as a metal, and coil as a copper wire. Recently, the assembly as yoke and magnet is made by human resources. These process has a long process time and it is difficult to secure quality. Also, These process is not economical in cost, and productivity is reduced. Therefore, an automatic assembly as yoke and magnet is needed in the present process. In this paper, we have developed an automatic assembly device that can automatically assemble yoke and magnet, and performed verifying performance. Therefore, by using the developed automatic assembly device, it is possible to increase the productivity and reduce the production cost.

Convergence Study on the Thermal Stress According to the Structure of Automotive Heating Seat (자동차 난방 시트의 구조에 따른 열응력 해석에 대한 융합 연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.169-174
    • /
    • 2019
  • Because the warm and cozy demand of automotive driving seat increases, the research development of heating seat has been actively made. In this study, the thermal stress analysis and the structural analysis were carried out with three kinds of heating seats of A, B and C. By executing the thermal analysis with the same material, model A was shown to have the heat transfer better than model B or model C at the study result. So, it could be seen that the heat transfers became different each other though models had the same material according to the configuration of product. Adding the hot wire in order to expect the safer heating can be better heating, but there is the limit on the aspect considering the capability in contrast to the price of product. Generally, model B is thought to be safest thermally than model A or model C in every respect. As the design data of the automotive heating seat product with the durability and safety acquired by this study result are used, the artistic environment can be promoted by being grafted onto the automotive driving seat.

Table-Based Fault Tolerant Routing Method for Voltage-Frequency-Island NoC (Voltage-Frequency-Island NoC를 위한 테이블 기반의 고장 감내 라우팅 기법)

  • Yoon, Sung Jae;Li, Chang-Lin;Kim, Yong Seok;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.66-75
    • /
    • 2016
  • Due to aggressive scaling of device sizes and reduced noise margins, physical defects caused by aging and process variation are continuously increasing. Additionally, with scaling limitation of metal wire and the increasing of communication volume, fault tolerant method in manycore network-on-chip (NoC) has been actively researched. However, there are few researches investigating reliability in NoC with voltage-frequency-island (VFI) regime. In this paper, we propose a table-based routing technique that can communicate, even if link failures occur in the VFI NoC. The output port is alternatively selected between best and the detour routing path in order to improve reliability with minimized hardware cost. Experimental results show that the proposed method achieves full coverage within 1% faulty links. Compared to $d^2$-LBDR that also considers a routing method for searching a detour path in real time, the proposed method, on average, produces 0.8% savings in execution time and 15.9% savings in energy consumption.

Analysis Method for Damage Patterns of Low Voltage Switches for PL Judgment (PL 판정을 위한 저압용 스위치의 소손 패턴 해석기법)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.136-141
    • /
    • 2010
  • The purpose of this study is to examine the structure and heat generation mechanism of low voltage switches used to turn on or off the power supply to an indoor lighting system and investigate how the fixtures and movable contacts of the switches are damaged depending on the types of energy sources in order to secure the judgment base for expected PL disputes. Based on the Korean Standard (KS) testing method for incombustibility, this study applied a general flame to the switch. In addition, current was supplied to the switch using the PCITS (Primary Current Injection Test System). The ambient temperature and humidity were maintained at $22{\pm}2^{\circ}C$ and 40~60% respectively while performing the test. It is thought that the switch generated heat due to a defective connection of the wire and clip, insulation deterioration and defective contact of the movable contact, etc. The surface of the switch damaged by the general flame was uniformly carbonized. When the flame source was removed, the fire on the switch was extinguished naturally. From the result obtained by disassembling the switch carbonized by the general flame, it could be seen that fixtures and movable contacts remained in comparatively good shape but the enclosure, clip support, movable contact, indicating lamp, etc. showed carbonization and discoloration. In the case of the switch damaged by overcurrent, the clip connecting the wires, clip support, etc. showed almost no trace of damage, but the fixtures, movable contact, indicating lamp, etc. were severely carbonized. That is, the sections with high contact resistance were intensively damaged and showed a damage pattern indicating that carbonization progressed from the inside to the outside. Therefore, it is possible to judge the initial energy source by analyzing the characteristics of the carbonization pattern and the metal fixtures of damaged switches.