• 제목/요약/키워드: Metal transfer

검색결과 961건 처리시간 0.025초

METAL TRANSFER MODES AND RECENT DEVELOPMENTS IN THEIR CONTROL IN THE GMAW PROCESS

  • Norrish., John;Cuiuri., Dominic
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.737-745
    • /
    • 2002
  • The paper reviews the classification of metal transfer in GMAW and the recent developments in metal transfer control. An expanded classification which takes into account the recent developments is proposed.

  • PDF

가스 메탈 아크 용접에서 유체 유동을 고려한 금속 이행에 관한 연구 (A Study on the Metal Transfer Considering Fluid Flow in GMAW)

  • 박기영;이세헌;엄기원
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.148-155
    • /
    • 1998
  • It is commonly known that, in GMAW, the characteristics of metal transfer and the size of molten drop are highly dependent on the welding current. These changes in the characteristics of metal transfer has a considerable effect on the weld quality, and a lot of studies have been made on metal transfer modes for that reason. In this study, two cases were investigated; the one in which the metal transfer proceeds with gravitational force, surface tension, and no electromagnetic force, and the other in which the process has electromagnetic term in addition, where the current density in the fluid has been assumed to have Gaussian distribution on any given cross-section and it acts vertically. Using fluid flow analysis, this study has observed the whole process of the development and break-up of the molten drop, and it also showed that transitional processes, drop rate, and the drop size in each metal transfer mode can be estimated.

  • PDF

알루미늄의 펄스 전류 미그 용접 (Metal Transfer Characteristics of Aluminium under Pulsed Current Metal Inert Gas Welding)

  • 최재호;최병도;김용석
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.127-133
    • /
    • 2002
  • In this study, metal transfer characteristics in pulsed current metal inert gas (MIG) welding of aluminum was investigated. Based on the metal transfer characteristics from direct current electrode negative MIG welding, the one drop per one pulse(ODOP) condition was predicted and compared with experimental data. The results indicated that experimental pulse range for the ODOP condition is wider than that predicted from the DCEP MIG welding data. In addition, more stable metal trnasfer behavior was obtained at the higher end of the ODOP condition.

차원 해석을 통한 GMA 용접의 금속이행 현상에 관한 분석 (Investigation on Metal Transfer in GMA Welding through Dimensional Analysis)

  • 최상균;유중돈
    • Journal of Welding and Joining
    • /
    • 제17권1호
    • /
    • pp.62-70
    • /
    • 1999
  • Since various parameters including the welding conditions and material properties are involved in metal transfer, it is difficult to figure out the effects of each parameter. In this study, dimensional analysis in performed to reduce the number of the parameters and to reveal the effect of each parameter on metal transfer. Dimensionless parameters are derived based on the inertia force and surface tension, and their contributions on metal transfer are estimated by analyzing the calculated results using the volume of fluid (VOF) method. Among several dimensionless parameters, $N_{SE}(=$\mu$_{0}I^{2}/d_{w}${\gamma}$)$ which represents the ratio of the electromagnetic force to surface tension, is found to be appropriate to describe metal transfer and estimate the transition current. Predicted results of transition current and drop size are in reasonably good agreements with available experimental date which show the validity of proposed dimensional analysis.

  • PDF

Numerical study on conjugate heat transfer in a liquid-metal-cooled pipe based on a four-equation turbulent heat transfer model

  • Xian-Wen Li;Xing-Kang Su;Long Gu;Xiang-Yang Wang;Da-Jun Fan
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1802-1813
    • /
    • 2023
  • Conjugate heat transfer between liquid metal and solid is a common phenomenon in a liquid-metal-cooled fast reactor's fuel assembly and heat exchanger, dramatically affecting the reactor's safety and economy. Therefore, comprehensively studying the sophisticated conjugate heat transfer in a liquid-metal-cooled fast reactor is profound. However, it has been evidenced that the traditional Simple Gradient Diffusion Hypothesis (SGDH), assuming a constant turbulent Prandtl number (Prt,, usually 0.85 - 1.0), is inappropriate in the Computational Fluid Dynamics (CFD) simulations of liquid metal. In recent decades, numerous studies have been performed on the four-equation model, which is expected to improve the precision of liquid metal's CFD simulations but has not been introduced into the conjugate heat transfer calculation between liquid metal and solid. Consequently, a four-equation model, consisting of the Abe k - ε turbulence model and the Manservisi k𝜃 - ε𝜃 heat transfer model, is applied to study the conjugate heat transfer concerning liquid metal in the present work. To verify the numerical validity of the four-equation model used in the conjugate heat transfer simulations, we reproduce Johnson's experiments of the liquid lead-bismuth-cooled turbulent pipe flow using the four-equation model and the traditional SGDH model. The simulation results obtained with different models are compared with the available experimental data, revealing that the relative errors of the local Nusselt number and mean heat transfer coefficient obtained with the four-equation model are considerably reduced compared with the SGDH model. Then, the thermal-hydraulic characteristics of liquid metal turbulent pipe flow obtained with the four-equation model are analyzed. Moreover, the impact of the turbulence model used in the four-equation model on overall simulation performance is investigated. At last, the effectiveness of the four-equation model in the CFD simulations of liquid sodium conjugate heat transfer is assessed. This paper mainly proves that it is feasible to use the four-equation model in the study of liquid metal conjugate heat transfer and provides a reference for the research of conjugate heat transfer in a liquid-metal-cooled fast reactor.

VOF 방법을 이용한 GMA 용접의 금속 이행에 관한 동적 해석 (I) - 입상 용적과 스프레이 이행 모드의 해석 - (Dynamic Analysis of Metal Transfer using VOF Method in GMAW (I) - Globular and Spray Transfer Modes)

  • 최상균;유중돈;김용석
    • Journal of Welding and Joining
    • /
    • 제15권3호
    • /
    • pp.36-46
    • /
    • 1997
  • Dynamics of molten drop detachment in the Gas Metal Arc (GMA) welding is investigated using the Volume of Fluid(VOF) method. The electromagnetic effects are included in the formulation of the VOF method which has been widely used to analyze the dynamics of the fluid having a free surface. The molten drop geometry, pressure and velocity profiles within the drop are calculated numerically in the cases of globular and spray transfer modes. It appears that the velocity and current distribution affect metal detachment. It is found that the taper is formed and maintained during the spray transfer by the electromagnetic force. Predicted results show reasonably good agreement with the available experimental data which validates the application of the VOF method to metal transfer analysis.

  • PDF

The Effect of Coolant Boiling on the Molten Metal Pool Heat Transfer with Local Solidification

  • Cho, Jea-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Nuclear Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.34-45
    • /
    • 2000
  • This study is concerned with the experimental test and numerical analysis of the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. In the test, the metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Experiments were performed by changing the test section bottom surface temperature of the metal layer and the coolant injection rate. The two-phase boiling coolant experimental results are compared against the dry test data without coolant or solidification of the molten metal pool, and against the crust formation experiment with subcooled coolant. Also, a numerical analysis is performed to check on the measured data. The numerical program is developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. The present empirical test and numerical results of the heat transfer on the molten metal pool are apparently higher than those without coolant boiling. This is probably because this experiment was performed in concurrence of solidification in the molten metal pool and the rapid boiling of the coolant. The other experiments were performed without coolant boiling and the correlation was developed for the pure molten metal without phase change.

  • PDF

발포 금속을 사용하는 채널의 열전달 특성 실험 및 해석 (Experiment and Analysis on the Heat Transfer Characteristics of a Channel Filled with Metal Form)

  • 손영석;신지영;조영일
    • 설비공학논문집
    • /
    • 제22권7호
    • /
    • pp.448-453
    • /
    • 2010
  • Porous media containing complex fluid passage have especially large surface area per unit volume. This study is aimed to identify the heat transfer characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed under various heat flux, velocity and pore density. Nusselt number decreases with higher pore density. Metal foams shows higher heat transfer coefficients than pin-fin structure with the same porosity. This is due to the more complex flow passage and larger heat transfer area based on the structure of the metal foams. The analysis on the pin-fin structure may not be suitable to the metal foam structure but should be identified extensively through further study.

용융부의 형상을 고려한 GMA 용접 공정의 금속이행 모델링 (Modeling of Metal Transfer in GMA Welding Process)

  • 이강희;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.115-121
    • /
    • 1995
  • As the metal transfer in the GMAW process affects the weld quality and productivity, the mechanism of molten formation and detachment has been investigated at various welding conditions. The force balance and pinch instability models have been widely used to analyze the metal transfer in the globular and spray modes, respectively A new approach is proposed in this work by minimizing the energy of molten drop system. Effects of the surface tension, gravity, electromagnetic and drag forces are considered with no presumed molten drop geometry. Effects of various welding conditions on the metal transfer are explained. The results show that the proposed mode can be applied to the globular and spray transfer modes. When compared with other models, results of the proposed model show better agreements with the available experimental data, which demonstrates the validity of the present model.

  • PDF

금속벨트 CVT의 전달함수 도출과 변속비 LQG/LTR 제어 (Transfer Function Derivation and LQG/LTR Speed Ratio Control for a Metal Belt CVT)

  • 김종준;송한림;김현수
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.49-58
    • /
    • 1997
  • In this paper, a transfer function was obtained for a PWM high speed solenoid valve controlled metal belt CVT system. The transfer function was defined as the ratio of speed ratio to PWM duty ratio and derived in time domain by linear regression analysis from the experimental results. The transfer function obtained showed different dynamic characteristics for the up and down shift. Also, LQG/LTR controller was designed for the CVT system using the transfer function. It is seen from the experimental results that LQG/LTR control showed good performance for the speed ratio tracking and disturbance rejection. The phase difference and relatively slow response are considered due to the inaccuracy os the transfer functions, which resulted from the inherent nonlinearities of the transmission characteristics of the metal belt CVT.

  • PDF