• 제목/요약/키워드: Metal tolerance

검색결과 202건 처리시간 0.027초

Heavy Metal Resistant Phosphate Solubilizing Bacteria

  • Song, June-Seob;Walpola, Buddhi Charana;Chung, Doug-Young;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.817-821
    • /
    • 2012
  • Soil samples collected from abounded mines of Boryeong area in South Korea were used in isolating bacterial strains and their capacity to solubilize inorganic phosphates and heavy metal tolerance were assessed in vitro. Three different inorganic phosphate sources (Ca phosphate, Fe phosphate, and Al phosphate) and four different heavy metals (Co, Cd, Pb and Zn) each with three concentrations ($100{\mu}g\;mL^{-1}$, $200{\mu}g\;mL^{-1}$, and $400{\mu}g\;mL^{-1}$) were used. The bacterial isolates PSB-1, PSB-2, PSB-3, and PSB-4 solubilized significantly higher amount of Ca phosphate during the first five days of incubation though subsequent drop in soluble phosphorus level in the medium was observed at the later stage (after 5 days) of the incubation. Solubilization of Ca phosphate and Fe phosphate was concomitant with the acidification of the culture medium compared to the control where it remained constant. Isolated strains could solubilize Fe phosphate to certain extent ($25-45{\mu}g\;mL^{-1}$) though solubilization of Al phosphate was found negligible. All the isolates were tolerant to heavy metals (Cd, Pb, and Zn) up to the concentration of $400{\mu}g\;mL^{-1}$ except PSB-1 and PSB-8, which were shown to be vulnerable to Co even at $100{\mu}g\;mL^{-1}$. Heavy metal tolerant strains should be further evaluated for plant growth promoting activities also under field conditions in order to assess their agricultural and environmental significance.

Cu 이온에 적응된 토착호산성박테리아를 이용한 폐광석으로부터 미생물용출 효율 향상 (The Efficiency of Bioleaching Rates for Valuable Metal Ions from the Mine Waste Ore using the Adapted Indigenous Acidophilic Bacteria with Cu Ion)

  • 김봉주;위대웅;최낙철;박천영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권4호
    • /
    • pp.9-18
    • /
    • 2012
  • This study was carried out to leach valuable metal ions from the mine waste ore using the adapted indigenous bacteria. In order to tolerance the heavy metals, the indigenous bacteria were repeatedly subcultured in the adaptation-medium containing $CuSO_4{\cdot}5H_2O$ for 3 weeks and 6 weeks, respectively. As the adaptation experiment processed, the pH was rapidly decrease in the adaptation-medium of 6 weeks more than the 3 weeks. The result of bioleaching with the adapted bacteria for 42 days, the pH value of leaching-medium in the 3 weeks tend to increased, whereas the pH of the 6 weeks decreased. In decreasing the pH value in the adaptation-medium and in the leaching-medium, it was identified that the indigenous bacteria were adapted $Cu^{2+}$ the ion and the mine waste ores. The contents of Cu, Fe and Zn in the leaching solution were usually higher leached in 6 weeks than 3 weeks due to the adaptation. Considering the bioleaching rates of Cu, Fe and Zn from these leaching solutions, the highest increasing the efficiency metal ion were found to be Fe. Accordingly, it is expected that the more valuable element ions can be leached out from the any mine waste, if the adapted bacteria with heavy metals will apply in future bioleaching experiments.

Proteome analysis of sorghum leaf and root in response to heavy metal stress

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Lee, Dong-Gi;Sarker, Kabita;Lee, Moon-Soon;Xin, Zhanguo;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.24-24
    • /
    • 2017
  • Heavy metals at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to oxidative stress in plants. The present study was performed to explore the metal tolerance mechanism in Sorghum seedling. Morpho-physiological and metal ions uptake changes were observed prominently in the seedlings when the plants were subjected to different concentrations of $CuSO_4$ and $CdCl_2$. The observed morphological changes revealed that the plants treated with Cu and Cd displayed dramatically altered shoot lengths, fresh weights, and relative water content. In addition, the concentration of Cu and Cd was markedly increased by treatment with Cu and Cd, and the amount of interacting ions taken up by the shoots and roots was significantly and directly correlated with the applied level of Cu and Cd. Using the 2-DE method, a total of 24 and 21 differentially expressed protein spots from sorghum leaves and roots respectively, 33 protein spots from sorghum leaves under Cd stress were analyzed using MALDI-TOF/TOF MS. However, the over-expression of GAPDH plays a significant role in assisting Sorghum bicolor to attenuate the adverse effects of oxidative stress caused by Cu, and the proteins involved in resistance to stress helped the sorghum plants to tolerate high levels of Cu. Significant changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. In addition, the up-regulation of glutathione S-transferase and cytochrome P450 may play a significant role in Cd-related toxicity and stress responses. The results obtained from the present study may provide insights into the tolerance mechanism of seedling leaves and roots in Sorghum under heavy metal stress.

  • PDF

Role of Proline Accumulation in Response to Toxic Copper in Microcystis aeruginosa

  • Park, So-Hyun;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_4호
    • /
    • pp.189-196
    • /
    • 2001
  • The blue green alga, Microcystis aeruginosa, was found to accumulate proline under the stressful concentration of cupric ions. The changes of proline level in Microcystis aeruginosa in response to copper(Cu) have been monitored and the function of the accumulated proline was studied with respect to its effect on Cu uptake. Exposure of Microcystis aeruginosa elevated concentrations of Cu led to accumulation of fee proline depending on the concentrations of the metal in the external medium. The greater the toxicity or accumulation of the metal, the higher the amount of proline in algal cells were found. When proline was exogenously supplied prior to Cu treatment, the absorption of Cu was markedly reduced. When exogenous proline was supplied after Cu treatment, it resulted in a remarkable desorption of the adsorbed Cu immediately after the addition of proline. Pretreatment of Microcystis aeruginosa with proline counteracted with metal-induced lipid peroxidation. The results of the present study showed a protective elect of proline on metal toxicity through inhibition of lipid peroxidation and suggested that the accumulation of proline may be related to the tolerance mechanism for dealing with Cu stress.

  • PDF

Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment

  • Kim, Woo-Gon;Sah, Injin;Kim, Seon-Jin;Lee, Hyeong-Yeon;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.572-582
    • /
    • 2021
  • This study investigated the creep and creep crack growth (CCG) behavior of the base metal (BM), weld metal (WM), and heat affected zone (HAZ) in a Gr. 91 weldment, which was made by a shield metal arc weld process. A series of tensile, creep, and CCG tests were performed for the BM, WM, and HAZ at 550 ℃. Creep behavior of the BM, WM, and HAZ was analyzed in terms of various creep laws; Norton's power-law, Monkman-Grant relation and damage tolerance factor (λ), and their constants were determined. In addition, each CCGR law for the BM, WM, and HAZ was proposed and compared in terms of a C*-fracture parameter. The WM and HAZ revealed faster creep rate, lower rupture ductility, and faster CCGRs than the BM, but they showed a similar behavior in the creep and CCG. The CCGRs obtained in the present study exhibited a marginal difference when compared with those of RCC-MRx of currently elevated design code in France. A creep crack path in the HAZ plane progressed towards a weak fine-grained HAZ adjacent to the BM.

Accuracy of a direct drill-guiding system with minimal tolerance of surgical instruments used for implant surgery: a prospective clinical study

  • Lee, Du-Hyeong;An, Seo-Young;Hong, Min-Ho;Jeon, Kyoung-Bae;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권3호
    • /
    • pp.207-213
    • /
    • 2016
  • PURPOSE. A recently introduced direct drill-guiding implant surgery system features minimal tolerance of surgical instruments in the metal sleeve by using shank-modified drills and a sleeve-incorporated stereolithographic guide template. The purpose of this study was to evaluate the accuracy of this new guided surgery system in partially edentulous patients using geometric analyses. MATERIALS AND METHODS. For the study, 21 implants were placed in 11 consecutive patients using the direct drill-guiding implant surgery system. The stereolithographic surgical guide was fabricated using cone-beam computed tomography, digital scanning, computer-aided design and computer-assisted manufacturing, and additive manufacturing processes. After surgery, the positional and angular deviations between planned and placed implants were measured at the abutment level using implant-planning software. The Kruskal-Wallis test and Mann-Whitney U test were used to compare the deviations (${\alpha}=.05$). RESULTS. The mean horizontal deviations were 0.593 mm (SD 0.238) mesiodistally and 0.691 mm (SD 0.344) buccolingually. The mean vertical deviation was 0.925 mm (SD 0.376) occlusogingivally. The vertical deviation was significantly larger than the horizontal deviation (P=.018). The mean angular deviation was 2.024 degrees (SD 0.942) mesiodistally and 2.390 degrees (SD 1.142) buccolingually. CONCLUSION. The direct drill-guiding implant surgery system demonstrates high accuracy in placing implants. Use of the drill shank as the guiding component is an effective way for reducing tolerance.

잉크젯 프린팅 방식으로 제작된 금속 배선의 선폭 및 오차 개선 (Tolerance Improvement of Metal Pattern Line using Inkjet Printing Technology)

  • 김용식;서상훈;김태구;박성준;정재우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.105-105
    • /
    • 2006
  • IT 산업 및 반도체 산업이 발전함에 따라 초소형, 고집적화 시스템의 요구에 대응하기 위해서 고해상도 및 고정밀의 패턴 구현에 관한 많은 연구가 진행되고 있다. 이러한 연구는 각종 산업제품의 PCB(Printed Circuit Board) 및 디스플레이 장치인 PDP(Plasma Display Panel), LCD(Liquid Crystal Display) 등에 적용되어 널리 응용되고 있다. 현재 널리 사용되는 인쇄 회로 기판은 마스킹 후 선택적 에칭 방식을 적용하여 금속 배선을 형성하는 방식을 적용하고 있다. 이러한 방식은 설계가 변경될 경우 마스크를 다시 제작해야 하는 번거로움이 있어 설계 변경이 용이하지 않고 더욱 길어진 생산시간의 증가로 인하여 생산성 및 집적도가 떨어지게 된다. 따라서 최근에는 이러한 한계를 극복하기 위한 방안이 여러 가지 측면에서 시도되고 있으며, 그 중에서도 Inkjet Printing 기술에 대한 관심이 증가하고 있다. 본 연구에서는 Inkjet Printing 방식을 적용하여 금속 배선을 형성하고 선폭과 두께의 오차를 줄여 배선의 Tolerance 를 개선할 수 있는 방안을 제안하였다. Inkjet Printing 방식을 이용한 기존의 금속 배선 형성은 고해상도의 DPI(Dot Per Inch)에서 잉크 액적이 뭉치는 Bulge 현상이 발생되어 원하는 형상 및 배선의 폭을 구현하는데 어려움이 있었다. Bulge 현상은 배선의 불균일성을 야기할 뿐만 아니라 근접한 배선의 간섭에도 영향을 미처 금속 배선의 기능을 할 수 없는 단점을 발생시킨다. 따라서 본 연구에서는 이러한 Bulge 현상을 줄이고 배선간의 간섭을 방지하여 원하는 배선을 용이하게 형성할 수 있는 순차적 인쇄 방식을 적용하였다. 본 연구에서는 노즐직경 35um 의 Inkjet Head 와 나노 Ag 입자 잉크를 사용하여 Glass 표면 위에 배선을 형성하고 배선의 폭과 두께를 측정하였다. 또한 순차적 인쇄 방식을 적용하여 700DPI 이상의 고해상도에서 나타날 수 있는 Bulge 현상이 감소하였음을 관찰하였으며 금속 배선의 Tolerance를 10%내외로 유지할 수 있음을 확인하였다.

  • PDF

Phytotoxic effects of mercury on seed germination and seedling growth of Albizia lebbeck (L.) Benth. (Leguminosae)

  • Iqbal, Muhammad Zafar;Shafiq, Muhammad;Athar, Mohammad
    • Advances in environmental research
    • /
    • 제3권3호
    • /
    • pp.207-216
    • /
    • 2014
  • A study was conducted to determine the phytotoxic effect of mercury on seed germination and seedling growth of an important arid legume tree Albizia lebbeck. The seeds germination and seedling growth performance of A. lebbeck responded differently to mercuric chloride treatment (1 mM, 3 mM, 5 mM and 7 mM) as compared to control. Seed germination of A. lebbeck was significantly (p < 0.05) affected by mercury treatment at 1 mM. Root growth of A. lebbeck was not significantly affected by mercury treatment at 1 mM, and 3 mM. Shoot and root length of A. lebbeck were significantly (p < 0.05) affected by 5 mM concentration of mercury treatment. Increase in concentration of mercury treatment at 5 mM and 7 mM significantly (p < 0.05) reduced seedling dry weight of A. lebbeck. The treatment of mercury at 1 mM decreased high percentage of seed germination (22%), seedling length (10%), root length (21.85%) and seedling dry weight (9%). Highest decrease in seed germination (51%), seedling (34%), root length (48%) and seedling dry weight (41%) of A. lebbeck occurred at 7 mM mercury treatment. A. lebbeck showed high percentage of tolerance (78.14%) to mercury at 1 mM. However, 7 mM concentration of mercury produced lowest percentage of tolerance (51.65%) in A. lebbeck. The seed germination potential and seedling vigor index (SVI) clearly decreased with the higher level of mercury. Plantation of A. lebbeck in mercury-polluted area will help in reducing the burden of mercury pollution. A. lebbeck can serve better in coordinating in land management programs in metal contaminated areas. The identification of the toxic concentration of metals and tolerance indices of A. lebbeck would also be helpful for the establishment of air quality standard.

토지이용 형태별 벌개미취의 생육 및 중금속 흡수능 (Growth and Heavy Metal Absorption Capacity of Aster koraiensis Nakai According to Types of Land Use)

  • 주영규;권혁준;조주성;신소림;김태성;최수빈;이철희
    • 한국자원식물학회지
    • /
    • 제24권1호
    • /
    • pp.48-54
    • /
    • 2011
  • 본 연구는 자생 벌개미취를 이용하여 다양한 토양에 오염된 중금속의 정화 가능성을 분석하기 위하여 시행되었다. 중금속으로 오염된 논, 밭 및 수림지에 벌개미취를 식재하여 8주간 재배한 후 생육 및 중금속 흡수능을 분석하였다. 벌개미취는 중금속으로 오염된 논, 밭 및 수림지에서 8주 동안 재배한 결과 벌개미취는 중금속 오염 토양에서도 생육이 우수한 것으로 나타나 중금속 내성이 있는 것으로 생각되었다. 또한 중금속에 오염된 다양한 토양에서 벌개미취가 흡수한 비소, 카드뮴, 구리, 납 및 아연의 함량을 분석한 결과, 벌개미취는 5종의 중금속을 모두 흡수하는 것으로 나타났으나, 토양 내 중금속의 함량 및 토성에 따라 흡수능이 각기 다르게 나타났다. 비소, 카드뮴 및 구리의 경우에는 토양 내 중금속 함량에 영향을 많이 받는 것으로 나타났으며, 토양 내 중금속의 함량이 높을수록 흡수능이 증가되었다. 납은 토양 내 중금속의 함량 보다는 토성에 의하여 흡수능이 달라지는 경향을 보였으며, 사질토인 수림지에서 흡수능이 가장 증가되었다. 아연의 흡수능은 토양 내 아연의 함량과 토성이 모두 영향을 미쳤는데, 고농도의 중금속으로 오염된 논과 밭에서 재배하였을 때 아연의 흡수능이 증가하는 것으로 나타났다. 연구의 결과, 벌개미취는 중금속에 대한 내성이 있으며, 다양한 중금속에 대한 흡수능이 우수하므로 중금속으로 오염된 여러 종류의 토양에 적용 가능한 경관식물 소재로 이용할 수 있을 것으로 생각되었다.

자동차 허브 베어링용 씰 금속부품의 판재성형 및 판단조의 복합성형 공정 개발 (Development of Combined Sheet Metal Forming and Plate Forging of a Metal Seal Part of Hub Bearing for an Automobile)

  • 박기근;문호근;오상균;전만수
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.194-202
    • /
    • 2020
  • In this paper, experimental and numerical study on a combined sheet metal forming and plate forging of a seal part of a passenger car's hub bearing is conducted to develop the new process of which target is to remove machining process by plate forging and to achieve near-net shape manufacturing. The previous process of a sheet metal forming inevitably needed a machining process for making stepped sheet after conventional sheet metal forming in a progressive way. The stepped sheet is intended to be formed by plate forging in this study. Through the systematic way of developing the combined forming process using solid elements based-elastoplastic finite element method (FEM), several conceptual designs are made and an optimized process design in terms of geometric dimensioning and tolerance of straightness of the thin part is found, which is exposed to bending in metal forming of axisymmetric part. The predicted straightness measured by the slope angle of the tilted thin region is compared with the experimental straightness, showing that they are in a good agreement with each other. Through this study, a systematic approach to optimal process design, based on elastoplastic FEM with solid elements, is established, which will contribute to innovating the conventional small-scaled sheet metal forming processes which can be dealt with by solid elements.