• Title/Summary/Keyword: Metal temperature

Search Result 4,852, Processing Time 0.024 seconds

Decentralized Composting of Garbage in a Small Composter for Dwelling House;III. Laboratory Composting of the Household Garbase in a Small Bin with Double Layer Walls (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화;III. 실험실조건에서 이중벽 소형 용기에 의한 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.232-245
    • /
    • 1995
  • The garbage from the dwelling house was composted in two kinds of small composter in the laboratory, and the possibility of garbage composting was examined. The composters were general small. One (type 3) was constructed with the double layer walls and the other (type 4) was the same as the first except for being insulated. Because it was found that type 3 was not available for composting under our meteorological conditions through the winter experiment, only type 4 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several components in the compost was evaluated and discussed. The results summarized below were those obtained at the end of the experiment, if the time was not specified. 1) The maximum temperature was $43^{\circ}C$ in winter, $55^{\circ}C$ in spring and $56^{\circ}C$ in summer. 2) The mass was reduced to an average of 63% and the volume reduction was an average of 78%. 3) The density was estimated as 1.5 kg/l in winter and 0.8 kg/l in spring and summer. 4) The water content was not much changed during the composting periods. It was 79.3% in winter, 75.0% in spring and 70.0% in summer. 5) After pH value increased during the first week, it decreased until the second week and increased again continuously thereafter. It reached pH 6.19 in winter, pH 7.59 in spring and pH 8.69 in summer. 6) The faster the organic matter was decomposed, the greater the ash content increased. The contents of cellulose and lignin increased, but that of hemicellulose decreased during the composting period. 7) Nitrogen contents were in the range of 3.3-6.8% and especially high in summer. After ammonium contents increased at the early stage of the composting period, they decreased. The maximum ammonium-nitrogen content was 2,404mg/kg after 8 weeks in winter, 12,400mg/kg after 3 weeks in spring and 20,718mg/kg after 3 weeks in summer. C/N-ratios decreased with the lapse of composting time, but they were not much changed. Nitrification occurred actively in summer. 8) The contents of volatile and higher fatty acids increased at the early stage of composting and reduced after that. The maximum content of total fatty acid was 9.7% after 6 weeks in winter, 14.8% after 6 weeks in spring and 15.8% after 2 weeks in summer. 9) The contents of inorganic components were not accumulated as composting proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.4% $K_2O$, 2.2-5.4% CaO and 0.30-0.61% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.21-14.55mg/kg CN, 11-166mg/kg Zn, 5-65mg/kg Cu, 0.5-10.8mg/kg Cd, 6- 35mg/kg Pb, ND-33 mg/kg Cr and ND-302.04 g/kg Hg.

  • PDF

Potential Study for the Sedimentary Exhalative Pb-Zn Mineralization in Dyusembay Area, Kazakhstan (카자흐스탄 듀셈바이지역의 퇴적분기형 연-아연 광화작용에 대한 잠재력 연구)

  • No, Sang-gun;Lee, Seung-han;Park, Ki-woong;Jeong, Hyeon-guk;Yun, Ji-seong;Kim, Sun-ok;Park, Maeng-eon
    • Economic and Environmental Geology
    • /
    • v.51 no.3
    • /
    • pp.213-222
    • /
    • 2018
  • Metasediment-hosted Pb-Zn mineralized zone has been found in Dyusembay of Kazakhstan. Its petrological properties, metal index, alteration index and redox-sensitivity are compared with those of SEDEX type deposit. Mineralization is developed along foliation of host rock (graphitic phyllite) and controlled by folds and faults; major ore minerals including pyrite, pyrrhotite, sphalerite, and galena are disseminated or interlayered with fine-grained quartz. The margin of the mineralized zone is metamorphosed accompanying sericite and chlorite. Hydrothermal brecciation and Pb-Zn mineralization formed in quartz-calcite stockworks are confirmed at the around of Maytyubin granitoid intrusions. The mineralization is classified into three types according to those of occurrence, paragenesis, chemical composition and isotopic characteristics. Type 1 whose fine-grained pyrite, pyrrhotite and sphalerite are formed in parallel yet discontinuous to well-developed foliations of the host rock; its geochemistry is similar to those of the earlier stage in SEDEX-type mineralization. In case of type 2, the ore minerals of which are concentrated being parallel to a foliation by regional metamorphism, and most of them associated with quartz and muscovite (${\pm}$ biotite) paragenetically. Type 3 is formed in the hydrothermal breccia zone whose ore minerals are controlled by foliation and breccia and developed in quartz ${\pm}$ calcite veins having a form such as stratification, stockwork or veinlets. Host rocks in the mineralized zone indicate homogeneous metamorphic grade and there is no specific alteration zonation. Also, all types (type 1, type 2, and type 3) represent similar REEs patterns, it can be interpreted that these are originated from a same source. Sulphides occurred in mineralized zone indicate a limited range of sulphur isotope values (type 2, ${\delta}^{34}S=-13.3{\sim}-11.7$‰; type 3, ${\delta}^{34}S=-13.9{\sim}-8.2$‰), and a result of geothermometry presents different temperature ranges: type 2($251{\pm}38^{\circ}C{\sim}277{\pm}40^{\circ}C$); type 3($360{\pm}2^{\circ}C$ to $537{\pm}29^{\circ}C$). It is estimated to be due to the effect of metamorphism and Maytyubin granitoid intrusions, respectively. In addition, ternary chart of thorium, scandium, and zircon for discrimination of tectonic setting and redox sensitivity using V/Mo values indicate that hydrothermal sediments put on reduction environment after precipitation, before being affected by metamorphism and intrusion activity. Geochemical data are plotted on a distal trend of SEDEX-type with discrimination plot using SEDEX index. As a result, petrological-geochemical properties demonstrate that Dyusembay Pb-Zn mineralized zone is comparable to distal-type of SEDEX deposit.