• Title/Summary/Keyword: Metal sensor

Search Result 864, Processing Time 0.026 seconds

Metallic FDM Process to Fabricate a Metallic Structure for a Small IoT Device (소형 IoT 용 금속 기구물 제작을 위한 금속 FDM 공정 연구)

  • Kang, In-Koo;Lee, Sun-Ho;Lee, Dong-Jin;Kim, Kun-Woo;Ahn, Il-Hyuk
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.21-26
    • /
    • 2020
  • An autonomous driving system is based on the deep learning system built by big data which are obtained by various IoT sensors. The miniaturization and high performance of the IoT sensors are needed for diverse devices including the autonomous driving system. Specially, the miniaturization of the sensors leads to compel the miniaturization of the fixer structures. In the viewpoint of the miniaturization, metallic structure is a best solution to attach the small IoT sensors to the main body. However, it is hard to manufacture the small metallic structure with a conventional machining process or manufacturing cost greatly increases. As one of solutions for the problems, in this work, metallic FDM (Fused depositon modeling) based on metallic filament was proposed and the FDM process was investigated to fabricate the small metallic structure. Final part was obtained by the post-process that consists of debinding and sintering. In this work, the relationship between infill rate and the density of the part after the post-process was investigated. The investigation of the relationship is based on the fact that the infill rate and the density obtained from the post-processing is not same. It can be said that this work is a fundamental research to obtain the higher density of the printed part.

Synthesis of LiDAR-Detective Black Material via Recycling of Silicon Sludge Generated from Semiconductor Manufacturing Process and Its LiDAR Application (반도체 제조공정에서 발생하는 실리콘 슬러지를 재활용한 라이다 인지형 검은색 소재의 제조 및 응용)

  • Minki Sa;Jiwon Kim;Shin Hyuk Kim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.39-47
    • /
    • 2024
  • In this study, LiDAR-detective black material is synthesized by recycling silicon sludge (SS) that is generated from semiconductor manufacturing process, and its recognition is confirmed using two types of LiDAR sensors (MEMS and Rotating LiDAR). In detail, metal impurities on the surface of SS is removed, followed by coating of titanium dioxide (TiO2) and subsequent chemical reduction to obtain SS-derived black TiO2 (SS/bTiO2) material. As-prepared SS/bTiO2 is mixed with transparent paint to prepare hydrophilic black paints and applied to a glass substrate using a spray gun. SS/bTiO2-based paint shows similar blackness (L*=15.7) compared to commercial carbon black-based paint, and remarkable NIR reflectance (26.5R%, 905nm). Furthermore, MEMS and Rotating LiDAR have successfully detected the SS/bTiO2-based paint. This is attributed to the occurrence of high reflection of light at the interface between the black TiO2 and the silicon sludge according to the Fresnel's reflection principle. Hence, the new application field to effectively recycle silicon sludge generated in the semiconductor manufacturing process has been presented.

EFFECT OF INSTRUMENT COMPLIANCE ON THE POLYMERIZATION SHRINKAGE STRESS MEASUREMENTS OF DENTAL RESIN COMPOSITES (측정장치의 compliance 유무가 복합레진의 중합수축음력의 측정에 미치는 영향)

  • Seo, Deog-Gyu;Min, Sun-Hong;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.145-153
    • /
    • 2009
  • The purpose of this study was to evaluate the effect of instrument compliance on the polymerization shrinkage stress measurements of dental composites. The contraction strain and stress of composites during light curing were measured by a custom made stress-strain analyzer, which consisted of a displacement sensor, a cantilever load cell and a negative feedback mechanism. The instrument can measure the polymerization stress by two modes: with compliance mode in which the instrument compliance is allowed, or without compliance mode in which the instrument compliance is not allowed. A flowable (Filtek Flow: FF) and two universal hybrid (Z100: Z1 and Z250: Z2) composites were studied. A silane treated metal rod with a diameter of 3.0 mm was fixed at free end of the load cell, and other metal rod was fixed on the base plate. Composite of 1.0 mm thickness was placed between the two rods and light cured. The axial shrinkage strain and stress of the composite were recorded for 10 minutes during polymerization. and the tensile modulus of the materials was also determined with the instrument. The statistical analysis was conducted by ANOVA. paired t-test and Tukey's test (${\alpha}<0.05$). There were significant differences between the two measurement modes and among materials. With compliance mode, the contraction stress of FF was the highest: 3.11 (0.13). followed by Z1: 2.91 (0.10) and Z2: 1.94 (0.09) MPa. When the instrument compliance is not allowed, the contraction stress of Z1 was the highest: 17.08 (0.89), followed by FF: 10.11 (0.29) and Z2: 9.46 (1.63) MPa. The tensile modulus for Z1, Z2 and FF was 2.31 (0.18), 2.05 (0.20), 1.41 (0.11) GPa, respectively. With compliance mode. the measured stress correlated with the axial shrinkage strain of composite: while without compliance the elastic modulus of materials played a significant role in the stress measurement.

A Study on the Characteristic of Ship`s Magnetic Distribution of M. S. KAYA by the Varies of Artificial Local Disturbance (인위적 지방자기 변동에 의한 가야호의 선체자기 분포특성에 관한 연구)

  • 조현정
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.144-158
    • /
    • 1998
  • In order to study basic information on the developed electro-magnetic compass, experiments were carried out on board M. S. KAYA at the pier of Dong Kuk Steel Mill in Pusan and the Korean southern sea using a three-axis magnetic sensor from Jan. 21, 1995 to Feb. 14, 1996. The obtained results were as follows : 1. The amount of old metal on the pier was about 27,290tons~57,440tons with an average of 40,560tons, the artificial local disturbance at the pier was min. 27.1$\mu$T, max. 66.5$\mu$T, ave. 433$\mu$T for the horizontal component and min. -27.0$\mu$T, max. 45.1$\mu$T, ave. 3.7$\mu$T for the vertical component. Its direction of horizontal component was 305$^{\circ}$ with the ship's head up bearing at 225$^{\circ}$. 2. The ship's magnetic distribution on the starboard side on berthing at the pier was 17.4$\mu$T for the horizontal component and -6.2$\mu$T for the vertical component. On the ship's port side, it was 19.8$\mu$T for the horizontal component and 4.1$\mu$T for the vertical component. On the ship's starboard side at sea, the ship's magnetic distribution was 19.2$\mu$T for the horizontal component and 3.2$\mu$T for the vertical component. On the ship's port side, the readings were 22.0$\mu$T for the horizontal component and -1.8$\mu$T for the vertical component. The directions of these readings were nearly starboard side. 3. On the pier, the secular change of the artificial local disturbance decreased 8.3$\mu$T from 61.0$\mu$T to 52.7$\mu$T for the horizontal component and decreased 7.1$\mu$T from 8.9$\mu$T M 1.8$\mu$T for the vertical component. On the starboard side from its berth, the ship, s magnetic distribution increased 2.6$\mu$T from 14.8$\mu$T to 17.4$\mu$T for the horizontal component and increased -0.1$\mu$T from -6.1$\mu$T to -6.2$\mu$T for the vertical component. On the ship's port side from its berth, it increased 7.1$\mu$T from 12.7$\mu$T to 19.8$\mu$T for the horizontal component and increased 10.2$\mu$T from -6.1$\mu$T to 4.1$\mu$T for the vertical component. 4. While at sea, on the ship's starboard side, the Secular change of the ship's magnetic distribution increased 3.9$\mu$T from 15.3$\mu$T to 19.2$\mu$T for the horizontal component and increased 2.0$\mu$T from -5.2$\mu$T to -3.2$\mu$T for the vertical component. On the port side, the changes increased 11.4$\mu$T from 10.6$\mu$T to 22.0$\mu$T for the horizontal component and increased 4.9$\mu$T from -6.7$\mu$T to -1.8$\mu$T for the vertical component. Upon berthing at the pier, the deviation of the secular change increased westerly 1 degree W~ 2.5$^{\circ}$ W from 3.5$^{\circ}$ W~ 5$^{\circ}$ W M 6W with the ship's head up bearing at 225$^{\circ}$. While at sea, these increased westerly 2$^{\circ}$ ~ 3$^{\circ}$ from the Northeast to the South and increased easterly 1$^{\circ}$ ~ 8$^{\circ}$ from the Southwest to the North. 5. While at port, within 1 mile between the ship and berth of the pier, as we approached the pier, the westerly deviation increased and when we departed the pier easterly deviation increased. When approaching the pier, the deviation was smaller than the deviation when the ship was departing from the pier. When approaching the bearing at 225$^{\circ}$ with the ship's head up bearing, the varies of deviation was smaller than the varies when the ship's head up bearing was departing from it.

  • PDF