• Title/Summary/Keyword: Metal powder sintering

Search Result 239, Processing Time 0.033 seconds

Fabrication of Nano-laminar Glass Composite Using Thin Flake

  • Kakisawa, Hideki;Minagawa, Kazumi;Halada, Kohmei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.330-331
    • /
    • 2006
  • Fabrication of a nano-laminar ceramic composite by sintering thin ceramic plates was examined. Silver-coated glass flakes with a thickness of less than $1{\mu}m$ were consolidated by pulsed current sintering or hotpressing to obtain model composites. The samples sintered at the optimum conditions were fairly dense, and the flakes were aligned by uniaxial press. The metal coating remained on the flakes through the sintering process, and became an interface layer between the flakes. No crack propagation through the transverse direction of the lamellar was observed in the indentation test. The possibilities of high resistance against crack propagation was suggested.

  • PDF

Thermal Dissipation Performance of a Heat Sink/Vapor Chamber Prepared by Metal Injection Molding Process

  • Chena, Bor-Yuan;Hwang, Kuen-Shyang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.767-768
    • /
    • 2006
  • In this study, copper vapor chambers with built-in cooling fins, which eliminated the soldered or brazed joints in the conventional vapor chamber, were fabricated using the metal injection molding process. The results show that with optimized molding parameters, fins with an aspect ratio up to 18 could be produced. After sintering, the densities of the fin and chamber reached 96%. With only 32 cooling fins and a small fan installed, the thermal resistance of the heat sink was $1.156^{\circ}C/W$, and the power dissipation was 40W when the junction temperature was $70^{\circ}C$. When copper powder was sintered onto the chamber to make a vapor chamber, the thermal resistance decreased to $1.046^{\circ}C/W$.

  • PDF

Establishment of Process of Manufacture of Ti-6Al-4V Alloy Sintering Body by MIM

  • Otsuka, A.;Suzuki, K.;Achikita, M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.759-760
    • /
    • 2006
  • Ti-6Al-4V has low specific gravity, high corrosion resistance and superior mechanical properties but it is very difficult to control oxygen content in MIM process. It is necessary to use powders with coarse particle size to decrease oxygen content of powders, so feedstocks with poor fluidity and sintered bodies with lower density are obtained in such cases. Fine titanium hydride-dehydride powders were blended with atomized powders to accomplish higher fluidity and sintered density. Sintered bodies had higher sintered density and mechanical properties equivalent to those of wrought materials by controlling oxygen content less than 0.35mass%.

  • PDF

Metal Injection Moulding of Duplex Stainless Steels

  • Sotomayor, M. E.;Varez, A.;Levenfeld, B.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.507-508
    • /
    • 2006
  • In this communication the development of a new metal injection moulding (MIM) system for duplex stainless steels is presented. The metal powders were prepared by premixing 316L and 430L stainless steels gas atomised powders in a ratio of 50:50. The binder used to prepare the feedstock was composed by HDPE and paraffin wax. Torque measurements of the mixture indicated that the maximum amount of metal was 68 vol%. The polymeric part was driven off by thermal debinding and the sintering was performed in low vacuum. The final densities were close to the theoretical ones.

  • PDF

Fabrication of Porous Yttria-Stabilized Zirconias Controlled by Additives

  • Paek, Yeong-Kyeun;Oh, Kyung-Sik;Lee, Hyuk-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.79-83
    • /
    • 2007
  • To fabricate a thick, porous yttria-stabilized zirconia without cracking and warping, a method for the simultaneous control of the porosity and shrinkage was designed. As a pore former, a potato starch was used. For the control of shrinkage the oxidation of Al metal particles was used. For the sintering of the above powder mixtures, a partial sintering technique was used at $1300^{\circ}C$ for 10 min in air. Upon adding the additives, high open porosity above 53% and a low shrinkage level were obtained. As a result cracking and warping of the sintered body were deterred. This outcome most likely resulted from the compensation of sintering shrinkage due to the volume expansion caused by oxidation of the Al metal particles during heat-treatment.

Development and Sintering test of Industrial SFF system using SLS process (SLS 공정을 이용한 산업용 SFF 시스템의 개발 및 소결실험)

  • Jo, Hong-Seok;Cho, Hyun-Taek;Baek, Yung-Jong;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1389-1393
    • /
    • 2007
  • Selective Laser Sintering (SLS) is currently recognized as a leading process in the new field of solid freeform fabrication (SFF). It is used to fabricate in a short time any 3 dimensional shapes by layer-by-layer sintering of polymer, ceramic or metal powder. To develop this SFF system, it needs effective laser scanning path, temperature and z-axis control for lamination. Therefore, in this study, through the application of control algorithm for sintering process have performed, temperature evaluation for sintering process has performed and the manufacturing sample using SLS process.

  • PDF

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF

Densification Behavior and Magnetic Properties of Fe-2%Ni Sintered Compact Fabricated by Metal Injection Molding (사출성형법에 의해 제작된 Fe-2%Ni연자성 소결체의 소결 및 자기적 특성)

  • Lim, Tae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.278-283
    • /
    • 2019
  • 3 kinds of fine powder, Fe-2%Ni alloy powder(N Ltd.) and Fe+2%Ni mixed powder(B Ltd. and S Ltd.), were fabricated into sintered compacts of bending strength specimens and ring type specimens by metal injection molding, debinding and controlling sintering conditions (reduction and sintering atmospheres, sintering temperature, sintering time and cooling rates). Density and magnetic properties of the sintered compacts were evaluated with the following conclusions. (1) When each compact was hold at 1123K for 3.6ks in H2 and sintered at 1623K for 14.4ks in Ar, the density of N, B and S Ltd.'s sintered compacts were measured as 96, 99 and 99%, and oxygen/carbon contents were measured as 0.0041%O/0.0006%C, 0.0027%O/0.0022%C, and 0.160%O/0.0026%C, respectively. (2) Magnetic characteristics of B Ltd. compact in Ar with the best results showed $B_{25}=14.3KG$, $B_r=7.75KG$, and $H_c=2.1Oe$, but not enough as those made by melting process. (3) Magnetic properties of B Ltd. compact which were sintered at 1673K for 14.4ks in Ar gas, and cooled at $0.83Ks^{-1}$ to 1123K and then cooled at $0.083Ks^{-1}$ down to room temperature were measured as $B_{25}=14.8KG$, $B_r=8.3KG$, and $H_c=1.3Oe$, almost similar to those made by melting process. Objected soft magnetic materials properties were obtained through sintering process by controlling sintering conditions (reduction condition, sintering atmosphere, sintering temperature and sintering time) and cooling rates.

Fabrication of Equiatomic CoCrFeMnNi High-Entropy Alloy by Metal Injection Molding Process Using Coarse-Sized Powders

  • Eun Seong Kim;Jae Man Park;Ji Sun Lee;Jungho Choe;Soung Yeoul Ahn;Sang Guk Jeong;Do Won Lee;Seong Jin Park;Hyoung Seop Kim
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • High-entropy alloys (HEAs) are attracting attention because of their excellent properties and functions; however, they are relatively expensive compared with commercial alloys. Therefore, various efforts have been made to reduce the cost of raw materials. In this study, MIM is attempted using coarse equiatomic CoCrFeMnNi HEA powders. The mixing ratio (powder:binder) for HEA feedstock preparation is explored using torque rheometer. The block-shaped green parts are fabricated through a metal injection molding process using feedstock. The thermal debinding conditions are explored by thermogravimetric analysis, and solvent and thermal debinding are performed. It is densified under various sintering conditions considering the melting point of the HEA. The final product, which contains a small amount of non-FCC phase, is manufactured at a sintering temperature of 1250℃.