• Title/Summary/Keyword: Metal oxide semiconductors

Search Result 73, Processing Time 0.034 seconds

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

Reliability Analysis of SiGe pMOSFETs Formed on PD-SOI (PD-SOI기판에 제작된 SiGe p-MOSFET의 신뢰성 분석)

  • Choi, Sang-Sik;Choi, A-Ram;Kim, Jae-Yeon;Yang, Jeon-Wook;Han, Tae-Hyun;Cho, Deok-Ho;Hwang, Young-Woo;Shim, Kyu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.533-533
    • /
    • 2007
  • The stress effect of SiGe p-type metal oxide semiconductors field effect transistors(MOSFETs) has been investigated to compare device properties using Si bulk and partially depleted silicon on insulator(PD SOI). The electrical properties in SiGe PD SOI presented enhancements in subthreshold slope and drain induced barrier lowering in comparison to SiGe bulk. The reliability of gate oxides on bulk Si and PD SOI has been evaluated using constant voltage stressing to investigate their breakdown (~ 8.5 V) characteristics. Gate leakage was monitored as a function of voltage stressing time to understand the breakdown phenomena for both structures. Stress induced leakage currents are obtained from I-V measurements at specified stress intervals. The 1/f noise was observed to follow the typical $1/f^{\gamma}$ (${\gamma}\;=\;1$) in SiGe bulk devices, but the abnormal behavior ${\gamma}\;=\;2$ in SiGe PD SOI. The difference of noise frequency exponent is mainly attributed to traps at silicon oxide interfaces. We will discuss stress induced instability in conjunction with the 1/f noise characteristics in detail.

  • PDF

Solution-Processed Fluorine-Doped Indium Gallium Zinc Oxide Channel Layers for Thin-Film Transistors (용액공정용 불소 도핑된 인듐 갈륨 징크 산화물 반도체의 박막 트랜지스터 적용 연구)

  • Jeong, Sunho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.59-62
    • /
    • 2019
  • In this study, we have developed solution-processed, F-doped In-Ga-Zn-O semiconductors and investigated their applications to thin-film transistors. In order for forming the appropriate channel layer, precursor solutions were formulated by dissolving the metal salts in the designated solvent and an additive, ammonium fluoride, was incorporated additionally as a chemical modifier. We have studied thermal and chemical contributions by a thermal annealing and an incorporation of chemical modifier, from which it was revealed that electrical performances of the thin-film transistors comprising the channel layer annealed at a low temperature can be improved significantly along with an addition of ammonium fluoride. As a result, when the 20 mol% fluorine was incorporated into the semiconductor layer, electrical characteristics were accomplished with a field-effect mobility of $1.2cm^2/V{\cdot}sec$ and an $I_{on}/_{off}$ of $7{\times}10^6$.

WN 박막을 이용한 저항 변화 메모리 연구

  • Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.403-404
    • /
    • 2013
  • 최근 scaling down의 한계에 부딪힌 DRAM과 Flash Memory를 대체하기 위한 차세대 메모리(Next Generation Memory)에 대한 연구가 활발히 진행되고 있다. ITRS (international technology roadmap for semiconductors)에 따르면 PRAM (phase change RAM), RRAM (resistive RAM), STT-MRAM (spin transfer torque magnetic RAM) 등이 차세대 메모리로써 부상하고 있다. 그 중 RRAM은 간단한 구조로 인한 고집적화, 빠른 program/erase 속도 (100~10 ns), 낮은 동작 전압 등의 장점을 갖고 있어 다른 차세대 메모리 중에서도 높은 평가를 받고 있다 [1]. 현재 RRAM은 주로 금속-산화물계(Metal-Oxide) 저항 변화 물질을 기반으로 연구가 활발하게 진행되고 있다. 하지만 근본적으로 공정 과정에서 산소에 의한 오염으로 인해 수율이 낮은 문제를 갖고 있으며, Endurance 및 Retention 등의 신뢰성이 떨어지는 단점이 있다. 따라서, 본 연구진은 산소 오염에 의한 신뢰성 문제를 근본적으로 해결할 수 있는 다양한 금속-질화물(Metal-Nitride) 기반의 저항 변화 물질을 제안해 연구를 진행하고 있으며, 우수한 열적 안정성($>450^{\circ}C$, 높은 종횡비, Cu 확산 방지 역할, 높은 공정 호환성 [2] 등의 장점을 가진 WN 박막을 저항 변화 물질로 사용하여 저항 변화 메모리를 구현하기 위한 연구를 진행하였다. WN 박막은 RF magnetron sputtering 방법을 사용하여 Ar/$N_2$ 가스를 20/30 sccm, 동작 압력 20 mTorr 조건에서 120 nm 의 두께로 증착하였고, E-beam Evaporation 방법을 통하여 Ti 상부 전극을 100 nm 증착하였다. I-V 실험결과, WN 기반의 RRAM은 양전압에서 SET 동작이 일어나며, 음전압에서 RESET 동작을 하는 bipolar 스위칭 특성을 보였으며, 읽기 전압 0.1 V에서 ~1 order의 저항비를 확보하였다. 신뢰성 분석 결과, $10^3$번의 Endurance 특성 및 $10^5$초의 긴 Retention time을 확보할 수 있었다. 또한, 고저항 상태에서는 Space-charge-limited Conduction, 저저항 상태에서는 Ohmic Conduction의 전도 특성을 보임에 따라 저항 변화 메카니즘이 filamentary conduction model로 확인되었다 [3]. 본 연구에서 개발한 WN 기반의 RRAM은 우수한 저항 변화 특성과 함께 높은 재료적 안정성, 그리고 기존 반도체 공정 호환성이 매우 높은 강점을 갖고 있어 핵심적인 차세대 메모리가 될 것으로 기대된다.

  • PDF

Carrier-enhanced Ferromagnetism in Cr-doped ZnO (Cr이 치환된 ZnO에서 나르개에 의한 강자성의 향상)

  • Sim, Jae-Ho;Kim, Hyo-Jin;Kim, Do-Jin;Ihm, Young-Eon;Yoon, Soon-Kil;Kim, Hyun-Jung;Choo, Woong-Kil
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.181-185
    • /
    • 2005
  • We have investigated the effects of Al codoping on the structural, electrical transport, and magnetic properties of oxide diluted magnetic semiconductor $Zn_{1-x}Cr_xO$ thin films prepared by reactive sputtering. Nondoped $Zn_{0.99}Cr_{0.01}O$ thin films show semiconducting transport behavior and weak ferromagnetic characteristic. The Al doping increases the carrier concentration and results in an decrease of resistivity and metal-insulator transition behavior. With increasing carrier concentration, the magnetic properties drastically change, exhibiting a remarkable increase of the saturation magnetization. These results show carrier-enhanced ferromagnetic order in Cr-doped ZnO.

Chemiresistive Sensor Array Based on Semiconducting Metal Oxides for Environmental Monitoring

  • Moon, Hi Gyu;Han, Soo Deok;Kang, Min-Gyu;Jung, Woo-Suk;Jang, Ho Won;Yoo, Kwang Soo;Park, Hyung-Ho;Kang, Chong Yun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.15-18
    • /
    • 2014
  • We present gas sensing performance based on $2{\times}2$ sensor array with four different elements ($TiO_2$, $SnO_2$, $WO_3$ and $In_2O_3$ thin films) fabricated by rf sputter. Each thin film was deposited onto the selected $SiO_2$/Si substrate with Pt interdigitated electrodes (IDEs) of $5{\mu}m$ spacing which were fabricated on a $SiO_2$/Si substrate using photolithography and dry etching. For 5 ppm $NO_2$ and 50 ppm CO, each thin film sensor has a different response to offers the distinguishable response pattern for different gas molecules. Compared with the conventional micro-fabrication technology, $2{\times}2$ sensor array with such remarkable response pattern will be open a new foundation for monolithic integration of high-performance chemoresistive sensors with simplicity in fabrication, low cost, high reliablity, and multifunctional smart sensors for environmental monitoring.

Characteristics of Electroplated Ni Thick Film on the PN Junction Semiconductor for Beta-voltaic Battery (베타전지용 PN 접합 반도체 표면에 도금된 Ni 후막의 특성)

  • Kim, Jin Joo;Uhm, Young Rang;Park, Keun Young;Son, Kwang Jae
    • Journal of Radiation Industry
    • /
    • v.8 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a $^{63}Ni$ plating condition on the PN junction semiconductor needed for production of beta-voltaic battery. PN junction semiconductors with a Ni seed layer of 500 and $1000{\AA}$ were coated with Ni at current density from 10 to $50mA\;cm^{-2}$. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased. The results showed that the optimum surface shape was obtained at a current density of $10mA\;cm^{-2}$ in seed layer with thickness of $500{\AA}$, $20mA\;cm^{-2}$ of $1000{\AA}$. Also, pure Ni deposit was well coated on a PN junction semiconductor without any oxide forms. Using the line width of (111) in XRD peak, the average grain size of the Ni thick firm was measured. The results showed that the average grain size was increased as the thickness of seed layer was increased.

Synthesis of size-controlled ZnO tetrapods sizes using atmospheric microwave plasma system and evaluation of its photocatalytic property (대기압 마이크로웨이브 플라즈마를 이용한 다양한 크기의 ZnO tetrapod 합성 및 광촉매 특성 평가)

  • Heo, Sung-Gyu;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.340-347
    • /
    • 2021
  • Among various metal oxide semiconductors, ZnO has an excellent electrical, optical properties with a wide bandgap of 3.3 eV. It can be applied as a photocatalytic material due to its high absorption rate along with physical and chemical stability to UV light. In addition, it is important to control the morphology of ZnO because the size and shape of the ZnO make difference in physical properties. In this paper, we demonstrate synthesis of size-controlled ZnO tetrapods using an atmospheric pressure plasma system. A micro-sized Zn spherical powder was continuously introduced in the plume of the atmospheric plasma jet ignited with mixture of oxygen and nitrogen. The effect of plasma power and collection sites on ZnO nanostructure was investigated. After the plasma discharge for 10 min, the produced materials deposited inside the 60-cm-long quartz tube were obtained with respect to the distance from the plume. According to the SEM analysis, all the synthesized nanoparticles were found to be ZnO tetrapods ranging from 100 to 600-nm-diameter depending on both applied power and collection site. The photocatalytic efficiency was evaluated by color change of methylene blue solution using UV-Vis spectroscopy. The photocatalytic activity increased with the increase of (101) and (100) plane in ZnO tetrapods, which is caused by enhanced chemical effects of plasma process.

Study on the Structural Stability and Charge Trapping Properties of High-k HfO2 and HFO2/Al2O3/HfO2 Stacks (High-k HfO2와 HfO2/Al2O3/HfO2 적층막의 구조 안정성 및 전하 트랩핑 특성 연구)

  • Ahn, Young-Soo;Huh, Min-Young;Kang, Hae-Yoon;Sohn, Hyunchul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.256-261
    • /
    • 2010
  • In this work, high-k dielectric stacks of $HfO_2$ and $HfO_2$/$Al_2O_3$/$HfO_2$ (HAH) were deposited on $SiO_2/Si$ substrates by atomic layer deposition as charge trapping layers in charge trapping devices. The structural stability and the charge trapping characteristics of such stacks were investigated using Metal-Alumina-Hafnia-Oxide-Silicon (MAHOS) structure. The surface roughness of $HfO_2$ was stable up to 11 nm with the insertion of 0.2 nm thick $Al_2O_3$. The effect of the thickness of the HAH stack and the thickness of intermediate $Al_2O_3$ on charge trapping characteristics were investigated for MAHOS structure under various gate bias pulse with duration of 100 ms. The threshold voltage shift after programming and erase showed that the memory window was increased with increasing bias on gate. However, the programming window was independent of the thickness of HAH charge trapping layers. When the thickness of $Al_2O_3$insertion increased from 0.2 nm to 1 nm, the erase window was decreased without change in the programming window.

Clinical comparison of intraoral CMOS and PSP detectors in terms of time efficiency, patient comfort, and subjective image quality

  • Kamburoglu, Kivanc;Samunahmetoglu, Ercin;Eratam, Nejlan;Sonmez, Gul;Karahan, Sevilay
    • Imaging Science in Dentistry
    • /
    • v.52 no.1
    • /
    • pp.93-101
    • /
    • 2022
  • Purpose: This study compared the effectiveness of complementary metal-oxide semiconductors (CMOS) and photostimulable phosphor (PSP) plates as intraoral imaging systems in terms of time efficacy, patient comfort, and subjective image quality assessment in real clinical settings. Materials and Methods: Fifty-eight patients (25 women and 33 men) were included. Patients were referred for a full-mouth radiological examination including 1 bitewing radiograph (left and right) and 8 periapical radiographs for each side (left maxilla/mandible and right maxilla/mandible). For each patient, 1 side of the dental arch was radiographed using a CMOS detector, whereas the other side was radiographed using a PSP detector, ensuring an equal number of left and right arches imaged by each detector. Clinical application time, comfort/pain, and subjective image quality were assessed for each detector. Continuous variables were summarized as mean±standard deviation. Differences between detectors were evaluated using repeated-measures analysis of variance. P<0.05 was accepted as significant. Results: The mean total time required for all imaging procedures with the CMOS detector was significantly lower than the mean total time required for imaging procedures with PSP (P<0.05). The overall mean patient comfort scores for the CMOS and PSP detectors were 4.57 and 4.48, respectively, without a statistically significant difference (P>0.05). The performance of both observers in subjectively assessing structures was significantly higher when using CMOS images than when using PSP images for all regions (P<0.05). Conclusion: The CMOS detector was found to be superior to the PSP detector in terms of clinical time efficacy and subjective image quality.