• Title/Summary/Keyword: Metal oxide semiconductor

Search Result 720, Processing Time 0.032 seconds

Electrochemical Fabrication of CdS/CO Nanowrite Arrays in Porous Aluminum Oxide Templates

  • Yoon, Cheon-Ho;Suh, Jung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1519-1523
    • /
    • 2002
  • A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

A Study on the TDDB Characteristics of Superthin ONO structure (초박막 GNO 구조의 TDDB 특성에 관한 연구)

  • 국삼경;윤성필;이상은;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.25-29
    • /
    • 1997
  • Capacitor-type MONOS (metal-oxide-nitride-oxide- semiconductor) NVSMs with 23$\AA$ tunneling oxide and 40$\AA$ blocking oxide were fabricated. The thicknesses of nitride layer were 45$\AA$, 91$\AA$ and 223$\AA$, Breakdown characteristics of MONOS devices were measured to investigate the reliability of superthin ONO structure using ramp voltage and constant voltage method. Reducing the nitride thickness will significantly increase the reliablity of MONOS NVSM.

  • PDF

MOS Capacitor 에서 Fixed Oxide Charge 가 문턱전압에 미치는 영향 분석

  • Cha, Su-Hyeong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.362-364
    • /
    • 2016
  • 본 논문에서는 MOS(Metal Oxide Semiconductor) Capacitor의 산화막내에 다양한 원인에 의해 존재하는 비이상적인 전하들 중 Fixed Oxide Charge가 소자의 문턱전압에 어떤 영향을 주는지 분석했다. 분석한 결과 n+ polysilicon Gate를 가지고, 산화막인 $SiO_2$의 두께가 3nm이고, 도핑농도가 $10^{18}cm^{-2}$인 P형 실리콘 기판으로 이루어진 MOS Capacitor에서 Fixed Oxide Charge Density가 $C/cm^2$ 이상일 때 문턱전압을 0.01V 이상 감소시키고 $C/cm^2$ 이하일 때 문턱전압을 0.01V 이상 증가시켰다.

  • PDF

Dielectric Properties of Poly(vinyl phenol)/Titanium Oxide Nanocomposite Thin Films formed by Sol-gel Process

  • Myoung, Hey-J;Kim, Chul-A;You, In-Kyu;Kang, Seung-Y;Ahn, Seong-D;Kim, Gi-H;Oh, ji-young;Baek, Kyu-Ha;Suh, Kyung-S;Chin, In-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1572-1575
    • /
    • 2005
  • Poly(vinyl phenol)(PVP)/$TiO_2$ nanocomposite the films have been prepared incorporating metal alkoxide with vinyl polymer to obtain high dielectric constant gate insulating material for a organic thin film transistor. The surface composition, the morphology, and the thermal and electrical properties of the hybrid nanocomposite films were observed by ESCA, scanning electron microscopy (SEM), atomic force microscopy(AFM), and thermogravimetric analysis (TGA). Thin hybrid films exhibit much higher dielectric constants (7.79 at 40wt% metal alkoxide).

  • PDF

A Study on the Characteristics and Programming Conditions of the Scaled SONOSFET NVSM for Flash Memory (플래시메모리를 위한 Scaled SONOSFET NVSM의 프로그래밍 조건과 특성에 관한 연구)

  • 박희정;박승진;남동우;김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.914-920
    • /
    • 2000
  • When the charge-trap type SONOS(polysilicon-oxide-nitride-oxide-semiconductor) cells are used to flash memory, the tunneling program/erase condition to minimize the generation of interface traps was investigated. SONOSFET NVSM(Nonvolatile Semiconductor Memory) cells were fabricated using 0.35 ㎛ standard memory cell embedded logic process including the ONO cell process, based on retrograde twin-well, single-poly, single metal CMOS(Complementary Metal Oxide Semiconductor) process. The thickness of ONO triple-dielectric for the memory cell is tunnel oxide of 24 $\AA$, nitride of 74 $\AA$, blocking oxide of 25 $\AA$, respectively. The program mode(V$\_$g/=7, 8, 9 V, V$\_$s/=V$\_$d/=-3 V, V$\_$b/=floating) and the erase mode(V$\_$g/=-4, -5, -6 V, V$\_$s/=V$\_$d/=floating, V$\_$b/=3 V) by MFN(Modified Fowler-Nordheim) tunneling were used. The proposed programming condition for the flash memory of SONOSFET NVSM cells showed less degradation(ΔV$\_$th/, S, G$\_$m/) characteristics than channel MFN tunneling operation. Also, the program inhibit conditins of unselected cell for separated source lines NOR-type flash memory application were investigated. we demonstrated that the phenomenon of the program disturb did not occur at source/drain voltage of 1 V∼12 V and gate voltage of -8 V∼4 V.

  • PDF

Ultrafast and flexible UV photodetector based on NiO

  • Kim, Hong-sik;Patel, Malkeshkumar;Kim, Hyunki;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.389.2-389.2
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF