• 제목/요약/키워드: Metal oxide semiconductor

검색결과 715건 처리시간 0.031초

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • 유태희;김정혁;상병인;최원국;황도경
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Influence of Charge Transport of Pt-CdSe-Pt Nanodumbbells and Pt Nanoparticles/GaN on Catalytic Activity of CO Oxidation

  • Kim, Sun Mi;Lee, Seon Joo;Kim, Seunghyun;Kwon, Sangku;Yee, Kiju;Song, Hyunjoon;Somorjai, Gabor A.;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.164-164
    • /
    • 2013
  • Among multicomponent nanostructures, hybrid nanocatalysts consisting of metal nanoparticle-semiconductor junctions offer an interesting platform to study the role of metal-oxide interfaces and hot electron flows in heterogeneous catalysis. In this study, we report that hot carriers generated upon photon absorption significantly impact the catalytic activity of CO oxidation. We found that Pt-CdSe-Pt nanodumbbells exhibited a higher turnover frequency by a factor of two during irradiation by light with energy higher than the bandgap of CdSe, while the turnover rate on bare Pt nanoparticles didn't depend on light irradiation. We also found that Pt nanoparticles deposited on a GaN substrate under light irradiation exhibit changes in catalytic activity of CO oxidation that depends on the type of doping of the GaN. We suppose that hot electrons are generated upon the absorption of photons by the semiconducting nanorods or substrates, whereafter the hot electrons are injected into the Pt nanoparticles, resulting in the change in catalytic activity. We discuss the possible mechanism for how hot carrier flows generated during light irradiation affect the catalytic activity of CO oxidation.

  • PDF

온-저항 특성 향상을 위한 게이트 패드 구조에 관한 연구 (Characteristic of On-resistance Improvement with Gate Pad Structure)

  • 강예환;유원영;김우택;박태수;정은식;양창헌
    • 한국전기전자재료학회논문지
    • /
    • 제28권4호
    • /
    • pp.218-221
    • /
    • 2015
  • Power MOSFETs (metal oxide semiconductor field effect transistor) operate as energy control semiconductor switches. In order to reduce energy loss of the device during switch-on state, it is essential to increase its conductance. In this study we have investigated a structure to reduce the on-resistance characteristics of the MOSFET. We have a proposed MOSFET structure of active cells region buried under the gate pad. The measurement are carried out with a EDS to analyze electrical characteristics, and the proposed MOSFET are compared with the conventional MOSFET. The result of proposed MOSFET was 1.68[${\Omega}$], showing 10% improvement compared to the conventional MOSFET at 700[V].

MoOx 기반 실리콘 이종접합 고성능 광검출기 (MoOx/Si Heterojunction for High-Performing Photodetector)

  • 박왕희;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.720-724
    • /
    • 2016
  • Transparent n-type metal-oxide semiconductor of $MoO_x$ was applied on a p-type Si substrate for high-performing heterojunction photodetector. The formation of $MoO_x$ on Si spontaneously established a rectifying current flow with a high rectification ratio of 1,252.3%. Under light illumination condition, n-type $MoO_x$/p-type Si heterojunction device provided significantly fast responses (rise time : 61.28 ms, fall time : 66.26 ms). This transparent metal-oxide layer ($MoO_x$) would provide a functional route for various photoelectric devices, including photodetectors and solar cells.

Fowler-nordheim 터널링 전자주입에 의한 질화 게이트 산화막의 특성 분석 (Characterizations of nitrided gate oxides by fowler-nordheim tunneling electron injection)

  • 장성수;문성근;노관종;노용한;이칠기
    • 전자공학회논문지D
    • /
    • 제35D권7호
    • /
    • pp.79-87
    • /
    • 1998
  • Nitrided oxides which have been investigated as alternative gate oxide for metal-oxide-semiconductor field effect devices were grown by two-step process using N$_{2}$O gas, and were chaacterized via a fowler-nordheim tunneling(FNT) electron injection technique. Electrical characteristics of nitrided gate oxides were superior to that of control oxides.Further, the FNT electron injection into the nitrided gate oxides reveals that gate oxides degrade more both if electrons were foreced to inject from the gate metal and if thicker nitrided gate oxides were used in the thickness range of 90~130.angs.. Models are suggested to explain these phenomena.

  • PDF

The Effects of Etch Chemicals on the Electrical Properties of Metal-Oxide-Semiconductor (MOS) Device with Plasma Enhanced Atomic Layer Deposited (PEALD) TiN Metal Electrode

  • 김영진;한훈희;임동환;손석기;;최창환
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.244-245
    • /
    • 2015
  • PEALD TiN 금속 전극을 갖는 MOS device에서 SC1 ($NH_4/H_2O_2/H_2O=1:2:5$), SPM ($H_2SO_4/H_2O_2=10:1$), $H_2O_2$ etch chemical을 이용해 TiN 식각 후 oxide 표면 잔류 Ti에 의한 전기적 특성 분석을 진행 하였다. Etch chemical 중 SPM을 이용한 소자의 전기적 특성이 우수하였는데, 이는 잔류Ti atom의 양이 다른 etch chemical을 사용한 것 대비 낮았기 때문이다. 이로 인하여 낮은 leakage current, less frequency dependence의 특성이 관찰되었다. 또한, 후속 열처리를 통해 더욱 우수한 특성이 관찰 되었다. 이러한 공정기술은 single 전극을 갖는 CMOS 형성 시 사용 될 수 있을 것으로 기대된다.

  • PDF

α-Fe2O3 nanostructure-based gas sensors

  • Lee, Seonyong;Jang, Ho Won
    • 센서학회지
    • /
    • 제30권4호
    • /
    • pp.210-217
    • /
    • 2021
  • Gas sensors based on semiconducting metal oxides have attracted considerable attention for various applications owing to their facile, cheap, and small-scale manufacturing processes. Hematite (α-Fe2O3) is widely considered as a promising candidate for a gas-sensing material owing to not only its abundance in the earth's crust and low price but also its chemical stability and suitable bandgap energy. However, only a few studies have been performed in this direction because of the low gas response and sluggish response of hematite-based gas sensors. Nanostructures present a representative solution to both overcome these disadvantages and exploit the desirable features to produce high-performance gas sensors. However, several challenges remain for adopting gas sensors based on metal oxide nanostructures, such as improving cost efficiency and facilitating mass production. This review summarizes the recent studies on gas sensors based on hematite nanostructures. It also provides useful insights into various strategies for enhancing the gas-sensing properties of gas sensors based on hematite nanostructures.

이층 배선공정에서 층간 절연막의 층덮힘성 연구 : PECVD와 $O_3$ThCVD 산화막 (Step-Coverage Consideration of Inter Metal Dielectrics in DLM Processing : PECVD and $O_3$ ThCVD Oxides)

  • 박대규;김정태;고철기
    • 한국재료학회지
    • /
    • 제2권3호
    • /
    • pp.228-238
    • /
    • 1992
  • 서브마이크론 설계규칙을 갖는 소자의 이층 배선 공정에서 다챔버 장비를 이용한 금속 층간절연막의 공극없는 평탄화를 위하여 PECVD와 $O_3$ ThCVD산화막의 증착시 층덮힘성을 연구하였다. 산화막의 두께가 증가됨에 따라 변화되는 순간단차비의 개념을 도입하여 공극형성의 개시점을 예측할 수 있는 관계식을 모델링하였고, 금속배선간격의 초기 단차비가 다양한 패턴에서 산화막의 두께에 따른 순간 단차비의 변화를 조사하였다. 모델링 검정결과 $5^{\circ}$이하의 re-entrant각을 갖는 TEOS에 의한 PECVO 산화막의 순간단차비가 모델링에 잘 일치하였다. 공극없는 평탄화는 제1층의 PECVD 산화막의 순간 단차비를 0.8이하로 유지하거나 Ar sputter식각을 통하여 산화막의 모서리에 경사를 준후 층덮힘성이 우수한 $O_3$ ThCVD산화막을 증착함으로써 가능하였다. $O_3$ ThCVD산화막의 etchback이 non etchback공정에 비하여 via접쪽저항체인에서 높은 수율을 보였으며, via접촉저항은 $0.1~0.3{\Omega}/{\mu}m^2$로 나타났다.

  • PDF

Ag 두께에 따른 IGZO/Ag/IGZO 다층 박막의 특성 연구 (Characteristics of IGZO/Ag/IGZO Multilayer Thin Films Depending on Ag Thickness)

  • 장야쥔;김홍배;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.510-514
    • /
    • 2013
  • In order to prevent heat loss that occurs through the glass, low-emissivity (Low-E) coating methods with good insulating properties and high transmittance were used. InGaZnO/Ag/InGaZnO (IGZO/Ag/IGZO) multilayer thin films have been deposited on XG glass substrate by RF magnetron sputtering. Depending on the different thickness of Ag in multilayer films, the structural and optical properties of Low-E multilayer films were analyzed. By XRD analysis results, the multilayer thin films were observed to be amorphous structure regardless of Ag thickness. According to the AFM results, surface morphology of the multilayer films was observed and compared. Using UV-VIS spectroscopy, low emissivity property has been observed clearly with the transmittance of higher than 85% at visible range and lower than 30% at IR range.

게이트 금속 변화에 의한 MOS 소자의 C-V 특성 (C-V Characteristics of The MOS Devices by Using different Gate Metals)

  • 최현식;서용진;유석빈;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1988년도 추계학술대회 논문집
    • /
    • pp.95-97
    • /
    • 1988
  • The instability of MOS devices is mainly caused by the oxide charges, and as the need to develop the gate metal grows researches for various new metal gate have been performed, and in these researches, the difference work function existing between the metal and the semiconductor should be considered. Here int his paper, the device is made by the sputtering and the LPCVD method using pure Al, compound metal. poly-si, as a gate metal, the result of the research was shown that the work function difference from using different gate metals effects on the flatband voltage shift. This means we can infer that the threshold voltage adjustment is possible by using different gate metals and this whole mechanism makes the devices behavior more stable.

  • PDF