• Title/Summary/Keyword: Metal mesh

Search Result 299, Processing Time 0.023 seconds

전기화학증착법에 의해 성장된 GaN 나노구조의 구조적 및 광학적 특성

  • Lee, Hui-Gwan;Lee, Dong-Hun;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.231-231
    • /
    • 2010
  • GaN는 상온에서 3.4 eV의 넓은 밴드갭을 갖는 직접천이형 반도체로 우수한 전기적/광학적 특성 및 화학적 안정성으로 발광 다이오드 및 레이저 다이오드 등과 같은 광전소자 응용을 위한 소재로 많은 연구가 진행되어왔다. 특히, GaN 나노구조의 경우 낮은 결함밀도, 빠른 구동 및 고집적 특성 등을 가지기 때문에 효과적으로 소자의 광학적/전기적 특성을 향상시킬 수 있어 나노구조 성장을 위한 연구가 활발히 진행되고 있다. 최근에는 Metal organic vapor deposition (MOCVD), hot filament chemical vapor deposition (CVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE) 등 다양한 방법을 통해 성장된 GaN 나노구조가 보고되고 있다. 하지만 고가 장비 사용 및 높은 공정 온도, 복잡한 공정과정이 요구되며 크기조절, 조성비, 도핑 등과 같은 해결되어야 할 문제가 여전히 남아있다. 본 연구에서는 나노구조를 형성하기 위하여 보다 간단한 방법인 전기화학증착법을 이용하여 GaN 나노구조를 ITO 및 FTO가 증착된 전도성 glass 기판 위에 성장하였고 성장 메커니즘 및 그 특성을 분석하였다. GaN 나노구조는 gallium nitrate와 ammonium nitrate가 혼합된 전해질 용액에 Pt mesh 구조 및 전도성 glass 기판을 1cm의 거리를 유지하도록 담가두고 일정한 전압을 인가하여 성장시켰다. Pt mesh 구조 및 전도성 glass 기판은 각각 상대전극 (counter electrode) 및 작업전극 (working electrode)으로 사용되었고 전해질 용액의 농도, 인가전압, 성장시간 등의 다양한 조건을 통하여 GaN 나노구조를 성장하고 분석하였다. 성장된 GaN 나노구조 및 형태는 field emission scanning electron microscopy (FE-SEM)를 이용하여 분석하였고, energy dispersive X-ray (EDX) 분석을 통하여 정량 및 정성적 분석을 수행하였다. 그리고 성장된 GaN 나노구조의 결정성을 조사하기 위해 X-ray diffraction (XRD)을 측정 및 분석하였다. 또한, photoluminescence (PL) 분석으로부터 GaN 나노구조의 광학적 특성을 분석하였다.

  • PDF

Routing Protocol of Shipping Container Network suitable for Port/Yard Stacking Environment: SAPDS(Simple Alternative Path Destined for Sink node) (항만/야적장 적치 환경에 적합한 컨테이너 네트워크 라우팅 프로토콜: SAPDS(Simple Alternative Path Destined for Sink node))

  • Kwark, Gwang-Hoon;Lee, Jae-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.728-737
    • /
    • 2011
  • For the real time monitoring and tracking of shipping container which is one of the core objects for global logistics, Wireless Ad-Hoc Network technology might be needed in stacking environments such as ports, yards and ships. In this paper, we propose a container network routing protocol suitable for port or yard stacking environments which include some constraints such as shadow area problem from metal material, frequent movement of container, etc. With this protocol in which a mesh network algorithm is applied, every container data packet can be delivered to the sink node reliably even with frequent join/leave of container nodes. As soon as a node on path gets malfunction, alternative backup path is supported with notice to neighbor node, which makes constant total optimal path. We also verified that the performance of proposed protocol is better than AODV, one of previous major MANet(Mobile Ad-Hoc Network) protocol with a function for alternative path, which says the proposed protocol is better for frequent join/leave and variable link quality.

Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.

Effects of Thermal and Mechanical Fatigue Stress on Bond Strength in Bracket Base Configurations (열적, 기계적 피로응력이 교정용 브라켓의 결합강도에 미치는 영향)

  • Kim, Jong-Ghee;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.625-642
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of mechanical and thermal fatigue stress on the shear, tensile and shear-tensile combined bond strengths(SBS, TBS, CBS) in various orthodontic brackets bonded to human premolars with chemically cured adhesive(Ortho-one, Bisco, USA). Five types of commercially available metal brackets with various bracket base configurations of Photoetched base(Tomy, Japan), Non-Etched Foil Mesh base(Dentaurum, Germany), Micro-Etched Foil Mesh base(Ortho Organizers, USA), Chessboard base(Daesung, Korea), and Integral base(3M Unitek, USA) were used. Samples were divided into 3 groups, the first group was acted with shear-tensile combined loads($45^{\circ}$) of 200g for 4 weeks(mechanical fatigue stress), the second group was subjected to the 5,000 thermocycles of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ baths(thermal fatigue stress), and the third group was the control. Bond strengths were measured at the crosshead speed of 0.5mm/min. The cross-section of bracket base/adhesive interface and the fracture surface were examined with the stereoscope and the scanning electron microscope. The resin remnant on bracket base surface was assessed by ART(Adhesive Remnant Index). The obtained results were summarized as follows, 1. In static bond strength, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In all brackets, shear bond strength(SBS) was in the greatest value and shear-tensile combined strength(CBS) was in the least value(p<0.05). 2. After mechanical fatigue test, Photoetched base bracket showed the maximum bond strength and Integral base bracket showed the minimum bond strength(p<0.05). In Photoetched base bracket and Micro-Etched Foil Mesh base bracket, shear bond strength(SBS), tensile bond strength(TBS) and shear-tensile combined strength(CBS) were decreased after mechanical fatigue test(p

  • PDF

Performance Evaluation of 1 N Class HAN/Methanol Propellant Thruster (HAN/메탄올 추진제를 사용하는 1 N급 추력기 성능 평가)

  • Lee, Jeongsub;Huh, Jeongmoo;Cho, Sungjune;Kim, Suhyun;Park, Sungjun;Kim, Sukyum;Kwon, Sejin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.299-304
    • /
    • 2013
  • The HAN which is an ionic liquid is a non-toxic monopropellant with high storability, and its specific impulse can be increased by blending methanol, thereby it can substitute the hydrazine. The HAN was synthesized by acid-base reaction of hydroxylamine and nitric acid, and the blending ratio of HAN and methanol is 8.2:1. The iridium catalyst was used to decompose the HAN, and 1 N class thruster with shower head type injector having one orifice was used to evaluate the HAN/Methanol propellant. The thermal stability of distributor was increased by using ceramic material to endure the high temperature of product gas. The preheating temperature of catalyst should be $400^{\circ}C$ at least for the complete decomposition. The feeding pressure should be increased to increase the $C^*$ efficiency, thereby the decomposition performance was decreased upstream catalyst, and the performance of thruster was decreased. The fine metal mesh was inserted after the injector to improve the atomization of propellant, thereby it can settle the performance decrease problem. The phenomenon of performance decrease was remarkably improved owing to the insertion of fine metal mesh.

Transparent Monopole Antenna on the Front Glass of an Automobile for FM Band (자동차 전면 글래스용 FM 대역 투명 모노폴 안테나)

  • Lee, Juhyung;Jung, Chang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.7
    • /
    • pp.477-483
    • /
    • 2018
  • A transparent antenna designed on the front glass of an automobile operating in the FM broadcast band(88~108 MHz) is proposed. A transparent antenna designed on the front glass of the automobile to avoid space limitation is typically positioned as a roof-mounted shark-fin antenna. An antenna designed on the front glass can reasonably solve the problems of low reception sensitivity and radiated interference from antennas for other service bands. The front glass has a unique closed-line structure, and this structure causes the surface current to flow to the front glass's surroundings; thus, the first resonance is caused before the broadcast band. Through the use of this closed-line structure, the surface current distribution is controlled, and an antenna for which the first resonance is operating in the frequency-modulated(FM) band can be designed. Moreover, the use of a micro-metal-mesh film that is a transparent electrode, suitable for designing a radio frequency device, enables the antenna to minimize visual perception through its transparency. The measured reflection coefficient($S_{11}$) of the antenna is less than -6 dB, and the average peak gain is -0.9 dB in the FM band. Experiments show that the transparent antenna on the front glass offers both the space and design freedom required to develop future automotive antennas.

Removal of Heavy Metal Ions Using Wood Charcoal and Bark Charcoal (목탄 및 수피탄의 중금속 이온 제거)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • To evaluate the effect of carbonization temperature of charcoal on the heavy metal adsorption property, Quercus mongolica wood and Larix kaempferi bark powder (100~60 mesh) were carbonized at between 400 and $900^{\circ}C$ at intervals of $100^{\circ}C$. In the properties of carbonized materials which affect the adsorption ability, pH increased with increasing the carbonization temperature, so that the pHs of wood and bark charcoal carbonized at $900^{\circ}C$ were 10.8 and 10.4, respectively. Also, in both materials, the carbon content ratio became larger as the carbonization temperature was raised. At the same carbonization temperature, carbon content ratio of the bark charcoal tended to be greater than that of the wood charcoal. In case of iodine adsorption which indicates the adsorption property in liquid phase, the wood charcoal showed higher adsorption value than the bark charcoal. From the investigation of adsorptive elimination properties of the charcoals against 15 ppm Cd, Zn, and Cu, the higher the carbonization temperature, the greater elimination ratio was. In comparison, the wood charcoal presented higher elimination ratio than that of the bark charcoal. In the wood charcoals carbonized at higher than $500^{\circ}C$, especially, 0.2 g of the charcoal was enough to eliminated almost 100% of the heavy metal ions. Heavy metal ion elimination ratio of the charcoals depended on the kinds of adsorbates. The effectiveness of adsorbates in adsorptive elimination by the charcoals were in order of Cu > Cd > Zn. This is because the physicochemical interaction between the adsorbate and adsorbent affects their adsorption properties, it is considered that subsequent researches are needed to improve the effectiveness of heavy metal adsorption by the charcoals.

Immersive Visualization of Casting Solidification by Mapping Geometric Model to Reconstructed Model of Numerical Simulation Result (주물 응고 수치해석 복원모델의 설계모델 매핑을 통한 몰입형 가시화)

  • Park, Ji-Young;Suh, Ji-Hyun;Kim, Sung-Hee;Rhee, Seon-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.15A no.3
    • /
    • pp.141-149
    • /
    • 2008
  • In this research we present a novel method which combines and visualizes the design model and the FDM-based simulation result of solidification. Moreover we employ VR displays and visualize stereoscopic images to provide an effective analysis environment. First we reconstruct the solidification simulation result to a rectangular mesh model using a conventional simulation software. Then each point color of the reconstructed model represents a temperature value of its position. Next we map the two models by finding the nearest point of the reconstructed model for each point of the design model and then assign the point color of the design model as that of the reconstructed model. Before this mapping we apply mesh subdivision because the design model is composed of minimum number of points and that makes the point distribution of the design model not uniform compared with the reconstructed model. In this process the original shape is preserved in the manner that points are added to the mesh edge which length is longer than a predefined threshold value. The implemented system visualizes the solidification simulation data on the design model, which allows the user to understand the object geometry precisely. The immersive and realistic working environment constructed with use of VR display can support the user to discover the defect occurrence faster and more effectively.

A Study on Design for Relay Station Antennas with U-shaped Back Plate Structure (ㄷ자형 Back Plate를 가진 중계국안테나의 설계에 관한 연구)

  • 민경식;임정남;김동일;정세모;이돈신
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.643-652
    • /
    • 1998
  • This paper presents the characteristics of a relay station antenna with the newly designed back-plate structure which is composed of the U-shaped metal plate for suppression of the back lobe by edge diffraction. The back lobe level of the conventional type was about -20 dB in the -z direction ( 180 ) . In order to improve the characteristics, the U-shaped mesh type metal plate is considered, where the design condition of the model antenna satisfies the wide null point angle range with the back lobe level of -30 dB below in the -z direction. The design parameters with the minimum back lobe level such as the dipole length, the distance between dipole elements and the back plate size have been found by using the released NEC Win Pro code. The calculated and measured back lobe Bevel of model antenna have been obtained 48.48 dB and -45 dB at 325 MHz, respectively.

  • PDF

The Electrode Characteristics of the Sintered AB5-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery (Ni-MH 2차전지용 AB5계 수소저장합금의 소결에 따른 전극 특성)

  • Chang, Sang-Min;Park, Won;Choi, Seung-Jun;Noh, Hak;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.157-164
    • /
    • 1996
  • The AB5-type metal hydride electrodes using $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$(LM : Lanthaniumrich Mischmetal) alloy powders(${\leq}200$mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrodes were sintered at $40^{\circ}C$ for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning electron microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrodes with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increased with increasing sintering time. However, there is little difference of discharge capacity for both electrodes.

  • PDF