• Title/Summary/Keyword: Metal membrane

Search Result 626, Processing Time 0.036 seconds

Chemical Active Liquid Membranes in Inorganic Supports for Metal Ion Separations

  • Yi, Jongheop
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.8-11
    • /
    • 1994
  • Disposal of hazardous ions in the aqueous streams is a significant industrial waste problem.. Waste streams from electronics, electroplating, and photographic industries contain metal ions such as copper, nickel, zinc, chromium(IV), cadmium, aluminum, silver, and gold, amongst others in various aqueous solutions such as sulfates, chlorides, fluorocarbons, and cyanides. Typical plating solutions having similar compositions are listed in Table 1. Spent process streams in catalyst manufacturing facilities also contain precious metals such as Ag, Pt, and Pd. Developing an effective recovery process of these metal ions for reuse is important.

  • PDF

Fixed Site Carrier Membrane for selective metal ion transport, supported by PET fabric (PET 직물을 매트릭스로 이용한 Fixed Site Carrier Membrane의 금속이온 투과성)

  • Kim, Yong-Yl;Soukil Mah
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.219-222
    • /
    • 2001
  • Membranes which selectively transport specific metals on an industrial scale is much useful in a number of applications, such as aqueous stream purification, catalyst and recycling of the reactants, the applications in metal ion sensing and so forth. Numerous studies have been already made to use liquid, supported liquid and, emulsion liquid membranes (LM) for selective carriers for metal ion transport. (omitted)

  • PDF

Study of Characteristic of Up-hill Transport in Alkali Metal-ions Through a Carrier Membrane (캐리어 막에 의한 알카리 금속 이온의 업-힐 수송의 특성 연구)

  • Park, Keunduck;Yang, Wongkang
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.224-229
    • /
    • 1999
  • Recently, many studies for the supported liquid membrane (SLM) using a carrier have been actively reported. Polymeric cation exchange membrane was synthsized by dissolving monensin carrier of antibiotic material in organic solvent. Then the SLM was applied to the Nernst-Planck and Fick equations and membrane potential and membrane permeability were measured respectively. The results showed the high selectivity towards alkali metal ions and the SLM showed linear relationship with low concentration. However, linear relationship did not appear at high concentration. This is explained by means of the new theory of the stagnant layer and the slop of logarithm value was linear for the up-hill transport phenomena of membrane transport.

  • PDF

Finite Element Analysis of Sheet Metal Forming Process Using Shell Element (쉘 요소를 이용한 박판성형공정의 유한요소해석)

  • Ko Hyung-Hoon;Lee Chan-Ho;Kang Dong-Kyu;Sul Nam-Ki;Lee Kwang-Sik;Jung Dong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.122-125
    • /
    • 2005
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its saving time effectiveness. However, it's well known that the membrane analysis can not provides correct information for the processes which considerable bending effects. From this time research it tried to compare the formation analysis result which uses the shell element which is applied newly in the AutoForm and actual products. The shell element is compromise method between continuum analysis and membrane analysis. The Finite element method by using shell element is the most economical numerical method. From analysis results, FEA by using shell element can estimate accurately the problems happened in actual auto-body panel.

  • PDF

Distribution of Heavy Metal in the Cell Components of Heavy Metal-Tolerant Microorganisms (중금속내성균의 세포내 중금속 분포)

  • Cho, Ju-Sik;Lee, Won-Kyu;Choi, Hyoung-Sub;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.55-60
    • /
    • 1997
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The distribution of heavy metal in the cell components, and amino acid compositions, was investigated. The distribution of heavy metal in the cell fractions of each heavy metal-tolerant microorganism grown for 20 hours in the basal medium containing 100mg/l of each heavy metal was investigated. In the case of cadmium-tolerant P. putida, lead-tolerant P. aeruginosa and copper-tolerant P. stutzeri, approximately $50{\sim}60%,\;30{\sim}40%$ and $10{\sim}17%$ of each heavy metal absorbed were distributed to cell wall, cell membrane and cytoplasm fractions, respectively. In the case of zinc-tolerant P. chlororaphis, approximately 32%, 55% and 13% of zinc were distributed to cell wall, cell membrane and cytoplasm fractions, respectively. These results indicated that the cell wall was a major adsorbing fraction of cadmium, lead and copper, and the cell membrane was that of zinc. Total amino acid content per gram of the cell grown in the culture media with heavy metal was higher than that of the cell grown in the culture media without heavy metal, and the content of acidic amino acids, such as aspartic acid(Asp.+Asn.) and glutamic acid(Glu.+Gln.) was higher than that of basic amino acids, such as histidine, lysine and arginine.

  • PDF

Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • 윤정환;정관수;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

Improved Membranes for the Extraction of Heavy Metals

  • Xu, Jianying;Shen, Wei;Paimin, Rohani;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.68-74
    • /
    • 2004
  • This work presents a series of experimental tests on new practical approaches in membrane design to improve extraction capacity and rate. We chose an extraction system involving Aliquat 336 as the extractant and Cd(II) as the metal ion to be extracted to demonstrate these new approaches. The core element in the new membrane assembly was the extractant loaded sintered glass filter. This membrane assembly provided a large interface area between the extractant and the aqueous solution containing metal ions. By recycling the aqueous solution through the membrane assembly, the extraction rate was significantly improved. The membrane assembly also offered good extraction capacity.

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.

Separation and Recovery of Heavy Metal Ion using Liquid Membrane (액체막법에 의한 중금속이온의 분리 및 회수)

  • Jo, Mun Hwan;Jeong, Hak Jin;Lee, Sang In;Kim, Jin Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.122-128
    • /
    • 1994
  • Macrocyclic ligand has been known to selectively bind with metal ions so that ability applied for the transport of metal ions across the emulsion liquid membrane in this study. The metal ions are transproted from the source phase to the receiving phase by the carrier of the organic phase. Several factors involved in the transport of metal ions acrose the emulsion membrane we reported here and these factors provided the informations for the selective seperation of some metal ion. Stability constants for cation-macrocyclic ligand and metal ion-anion receiving phase interaction are examined as parameters for the prediction of metal ion transport selectivities. $Pb^{2+}$ was transported higher rates than the other metal ions in the mixture solution. The interaction of metal ion to anion in receiving phase is important. $S_2O_3^{2-}$- in replacement of $NO_3^-$ in the receiving phase enhances the transport of $Pb^{2-}$since $Pb^{2-}-S_2O_3^{2-}$interaction is greater than $Pb^{2+}-NO_3^-$ interaction.

  • PDF

Removal of Heavy Metal Ions from Wastewater by Polyacrylonitrile based Fibers: A Review (폴리아크릴로나이트릴 섬유를 기반으로 한 폐수에서의 중금속 이온 제거: 총설)

  • Oh, Hyunyoung;Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • Environmental pollution caused by the presence of heavy metal ion from growing industrialization or from leaching is increasing area of concern. There are several area of water purifications but among them adsorption on the functionalized polymer fibers is efficient and cost-effective method. Polyacrylonitrile (PAN) is exciting polymer due to the presence of excessive functional group which can be easily transformed for metal ion adsorption. PAN can be easily electrospun to prepare nanofiber that have higher surface area leading to better metal ion removal. Composite PAN fiber is yet another type of polymer covered in this review for waste water treatment.