• Title/Summary/Keyword: Metal hydroxides

Search Result 61, Processing Time 0.031 seconds

Removal of Se(IV) by the Fe(III)-impregnated Sea sand - Zeta potential approach to depict the binding between Fe(III) and Sea sand (표면 처리한 Sea sand를 이용한 Se(IV) 제거 - Zeta potential을 통한 Fe(III)간의 반은 메카니즘 연구)

  • 박상원;강혜정
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.205-209
    • /
    • 1999
  • Iron hydroxides are good adsorbents for uncomplexed metals, some metal-ligand complexes and many metal oxyanions. However, their adsorption properties of these precipitations are not fully exploited in wastewater treatment operations because of difficulties associated with their separation from the aqueous phase. This study describes experiments in which iron hydroxides were coated onto the surface of ordinary adsorbents(Sea sand) that are very resistant to acids, The coated adsorbents were used in adsorption of oxyanionic metals. The process was successful in removing some anions such as $SeO_3(-II)$ over a wide range of metal concentrations and sorption of oxyanionic metals increased with decreasing pH. Formation of two surface complexes for oxyanionic metals adsorption on iron hydroxides comprise (1) complexation of the free anion by a positively charged surface site, and (2) protonation of the adsorbed anion (or alternatively adsorption of a protonated form from solution) The coated adsorbents are inexpensive to prepare and could serve as the basis of a useful oxyanionic metal removal.

  • PDF

Changes in Physical Properties and Its Metal Removal Efficiency for The Yellow Soils by Calcination Process (소성처리에 의한 황토의 물성특성 변화 및 용존 중금속 제거능력)

  • Lee, Jin-Won;Kim, Seokhwi;Hwang, Gab-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.584-591
    • /
    • 2017
  • Metal removal from water has not been explained clearly by either adsorption onto the surface of absorbents or precipitation as metal hydroxides because those occur simultaneously to a certain extent. For a better understanding of the metal removal mechanisms, batch experiments were performed using soil calcined at $850^{\circ}C$ under various pH conditions for Cu, Pb, Zn, Cd, and Cr. The results showed that the metal removal efficiency with the exception of Cr decreased abruptly, even within 5 min, showing more than 90% removal. The pH of each reactant increased gradually from around 7 to 9 with time. The increases in metal removal at higher pH appear to be associated with metal hydroxides precipitation. Comparative experiments, which were carried out changing the pH by reacting with commercial activated carbon (CAC), natural yellow soil (NYS), and calcined yellow soil (CYS), showed that the pH of the CYS only increased with time. Calcination processes might lead to a change in the physical properties of the soil matrix resulting in a high pH when reacted with water. Apart from adsorption onto the surface of the absorbents, these results show that the adsorption and/or precipitation of hydroxides onto the surface of adsorbents also play important roles in regulating the dissolved metals under alkaline conditions.

The Effects of the Heavy Metal Ions on the Hydration and Microstructure of the Cement Paste (중금속이온이 시멘트의 수화 및 미세구조에 미치는 영향)

  • 김창은;이승규
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.967-973
    • /
    • 1993
  • The effect on the hydration of cement was that Cu and Pb reacted with alkali to form soluble hydrates at theinitial stage and then there followed a slow reaction forming insoluble metal hydroxides. These hydroxides were deposited on the surface of cement particles providing a barrier against further hydration. But as a slow reaction continued, the insoluble layers were eventually destroyed and the hydration reaction resumed. Thereafter, another retardation occured by restricting the polymerization of silicates, shown by FT-IR spectroscopy analysis. In the case of Cr, as its reaction with cement caused H2O, the coordinator of Cr complex, to replace or polymerize with OH-, the formation of Cr complex promoted the leakage of OH- and increased the heat of dissolution. So the total heat evolution during hydration was larger than that in the case of Pb or Cu. The retarding effect of heavy metal ions was in the order Pb>Cu>Cr.

  • PDF

Nanostructured Ni-Mn double hydroxide for high capacitance supercapacitor application

  • Pujari, Rahul B.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2021
  • Recently, transition-metal-based hydroxide materials have attracted significant attention in various electrochemical applications owing to their low cost, high stability, and versatility in composition and morphology. Among these applications, transition-metal-based hydroxides have exhibited significant potential in supercapacitors owing to their multiple redox states that can considerably enhance the supercapacitance performance. In this study, nanostructured Ni-Mn double hydroxide is directly grown on a conductive substrate using an electrodeposition method. Ni-Mn double hydroxide exhibits excellent electrochemical charge-storage properties in a 1 M KOH electrolyte, such as a specific capacitance of 1364 Fg-1 at a current density of 1 mAcm-2 and a capacitance retention of 94% over 3000 charge-discharge cycles at a current density of 10 mAcm-2. The present work demonstrates a scalable, time-saving, and cost-effective approach for the preparation of Ni-Mn double hydroxide with potential application in high-charge-storage kinetics, which can also be extended for other transition-metal-based double hydroxides.

A Study on the Effect of Expandable Graphite and Metal Hydroxides on the Properties of Wood Plastic Composites (WPCs) (팽창성 흑연과 금속수산화물이 목재·플라스틱 복합재의 특성에 미치는 영향에 관한 연구)

  • Kim, Seungkyun;Lee, Danbee;Lee, Sun-Young;Chun, Sang-Jin;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.4
    • /
    • pp.392-398
    • /
    • 2016
  • Wood-plastic composites (WPCs) composed of mainly wood flour and thermoplastics have attracted considerable attentions due to advantages of cost effectiveness, high durability, and microbial resistance. However, relatively poor fire resistance of WPCs from low thermal stability of wood and plastics prevents further uses. This study investigated the effect of expandable graphite (EG) and aluminium hydroxide (AH)/magnesium hydroxide (MH) on the properties of WPCs. The combined incorporation of both EG and metal hydroxide (i.e., AH or MH) into formulations leads to higher flexural modulus of filled composites compared to neat PP and WPC. In thermal properties, EG played an important role in improving thermal stability of filled composites by suppressing thermal decompositions of wood and PP. Moreover, EG showed better water absorption features. From this research, it can be said that EG and metal hydroxides have potentials as effective reinforcement, flame retardant, and moisture barrier.

CHARACTERIZATION OF $YBa_2Cu_3O_{7-x}$ MADE BY A SOL-GEL PROCESS USING NITRATE SALTS AND SODIUM HYDROXIDE (질산염(窒酸鹽)과 수산화(水酸化)나트륨을 써서 졸-겔 법(法)으로 만든 $YBa_2Cu_3O_{7-x}$의 특성분석(特性分析))

  • Kim, Bong-Heup;Kang, Hyung-Boo;Kim, Hyun-Teak
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.143-149
    • /
    • 1990
  • A sol-gel processing of $YBa_2Cu_3O_{7-x}$ superconductor using metal nitrate salts and sodium hydroxide as the starting materials has been investigated because of the need to produce pure, hompgeneous superconducting materials. Since the precipitation of barium hydroxides can be obtained only at high basicities, the process has to be carried out Ca. pH 13 to get the simultaneous coprecipitation with the other metal hydroxides. The involved reaction mechanisms were investigated and intermediate and final products were characterized by means of thermogravimetric analysis(TGA), infra-red(IR) spectroscopy, X-ray diffraction(XRD) analysis, scanning electron microscopy(SEM), thermal mechanical analysis(TMA) and electrical measurement.

  • PDF

Adsorption of Heavy Metal Cations by Fe and Al Hydroxides (철, 알루미늄 수산화물에 의한 중금속 Ion의 흡착)

  • Lee, Jyung-Jae;Chang, Sang-Moon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.105-113
    • /
    • 1995
  • Adsorption experiments of heavy metal cations by Fe- and Al-hydroxides was conducted to obtain clear information on their adsorption mechanisms. The adsorption isothermal curves of heavy metal cations by Fe- and Al-hydroxides conformed to Langmuir's equation. Increasing the crystallinity degree of Fe- and Al-hydroxides tended to decrease the adsorption capacity and binding energy of heavy metal cations. At the same crystallinity degree, Al-hydroxide showed higher adsorption capacity and energy for the heavy metal cations than Fe-hydroxide. The adsorption capacity and energy of heavy metal cations were directly related to CEC, specific surface area and charge density of hydroxides, and the sequence was in the order of $Cu^{+{+}}$ > $Zn^{+{+}}$ > $Cd^{+{+}}$. The adsorption mechanism of $M^{+{+}}$ form of heavy metal could be presumed as the specific adsorption of $M^{+{+}}$ and the desorption of two $H^+$ from the surface aquo($OH_2$) and/or hydroxo(-OH) group for each mole of $M^{+{+}}$ adsorbed. A ring structure between $M^{+{+}}$ and two surface aquo and/or hydroxo groups was postulated. Nonspecific adsorption involved the adsorption of $MCl^+$ and the desorption of one H+ from the surface aquo and/or hydroxo groups for each mole of $M^{+{+}}$ adsorbed. A single bond structure in which $MCl^+$ replaced one $H^+$ from the surface aquo and/or hydroxo groups was postulated. The ratio of specific to nonspecific adsorption increased with increasing pH.

  • PDF

A basic study on the recovery of Ni, Cu, Fe, Zn ions from wastewater with the spent catalyst (폐산화철촉매에 의한 폐수중 Ni, Cu, Fe, Zn이온 회수에 관한 기초연구)

  • Lee Hyo Sook;Oh Yeung Soon;Lee Woo Chul
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.3-8
    • /
    • 2004
  • A basic study on the recovery of heavy metals such as Zn, Ni, Cu and Fe ions from wastewater was carried out with the spent iron oxide catalyst, which was used in the Styrene Monomer(SM) production company. The heavy metals could be recovered more than 98% with the spent iron oxide catalyst. The alkaline components of the spent catalyst could be precipitated the metal ions of the wastewater as metal hydroxides at the higher pH 10.6 in Ni, pH 8.0 in Cu, pH 6.5 in Fe, pH 8.5 in Zn. But the metal ions are adsorbed physically on the surface of the spent catalyst in the range of the pH of the metal hydroxides and pH 3.0, which is the isoelectric point of the iron oxide catalyst.