• Title/Summary/Keyword: Metal grid

Search Result 130, Processing Time 0.026 seconds

A study on the Plastic Deformation of Surface in Lathe Turning by Grid Method (Grid법에 의한 선삭 가공면의 변형에 관한 연구)

  • Cha, Il-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.4
    • /
    • pp.43-52
    • /
    • 1986
  • Experimental results on plastic strain induced in truning operation are presented in this paper. The plastic strain is computed by lagrangian strain using grid method, and metal cutting phenomena are also illustrated by micrograph and distribution figures of plastic strain and microvickers hardness of the machining surface. In the cutting of ductile materials, such as carbon steel, generally, the plastic strain is found to be concentrated near the surface. The amount of plastic strain increases with increasing cutting speed and feed rate. The dustribution of microvickers hardness is greater near the cutting surface and decreases from the machining surface under which its hardness returns to the normal hardness of the material.

  • PDF

Fabrication and Characterization of Polycrystalline Silicon Solar Cells using Preferential Etching of Grain Boundaries (결정입계의 선택적 식각을 이용한 다결정 규소 태양전지의 제작과 특성)

  • Kim, Sang-Su;Kim, Cheol-Su;Lim, Dong-Gun;Kim, Do-Young;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1430-1432
    • /
    • 1997
  • A solar cell conversion effiency was degraded by grain boundary effect in polycrystalline silicon. To reduce these effects of the grain boundaries, we investigated various influencing factors such as preferential chemical etching of grain boundaries, grid design, transparent conductive thin film, and top metallization along grain boundaries. Pretreatment in $N_2$ atmosphere and gettering by $POCl_3$ and Al were performed to obtain polycrystalline silicon of the reduced defect density. Structural, electrical, and optical properties of solar cells were characterized. Improved conversion efficiencies of solar cell were obtained by a combination of Al diffusion into grain boundaries on rear side, fine grid finger, top Yb metal grid on Cr thin film of $200{\AA}$ and buried contact metallization along grain boundaries.

  • PDF

Effect of Microstructure on Corrosion Behavior of TiN Hard Coatings Produced by Two Grid-Attached Magnetron Sputtering

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • The introduction of two-grid inside a conventional process system produces a reactive coating deposition and increases metal ion ratio in the plasma, resulting in denser and smoother films. The corrosion behaviors of TiN coatings were investigated by electrochemical methods, such as potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) in deaerated 3.5% NaCl solution. Electrochemical tests were used to evaluate the effect of microstructure on the corrosion behavior of TiN coatings exposed to a corrosive environment. The crystal structure of the coatings was examined by X-ray diffractometry (XRD) and the microstructure of the coatings was investigated by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). In the potentiodynamic polarization test and EIS measurement, the corrosion current density of TiN deposited by two grid-attached magnetron sputtering was lower than TiN deposited by conventional magnetron type and also presented higher Rct values during 240 h immersion time. It is attributed to the formation of a dense microstructure, which promotes the compactness of coatings and yields lower porosity.

The singulation study of $\mu$-BGA(Ball Grid Array) board using a pulsed Nd:YAG laser (펄스 Nd:YAG 레이저를 이용한 $\mu$-BGA 기판의 개별칩 분리 연구)

  • Baek, Kwang-Yeol;Lee, Kyoung-Cheol;Lee, Choen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.524-527
    • /
    • 2000
  • In this paper, we have studied minimization of the burr which occurred after $\mu$-BGA(ball grid array) singulation process, singulation of the multilayer with a pulsed Nd:YAG(266, 532 nm) laser is used to cut the metal layer which doesn't well absorb laser beam. Especially, the photoresist and $N_2$blowing is effective to minimize of the surface demage and burr. In this experiment, the $N_2$ blowing reduces a laser energy loss by debris and suppress a surface oxidation. The SEM(scanning electron microscopes) and non-contact 3D inspector are used to measure cutting line-width and surface demage. The $\mu$-BGA singulation threshold energy is 75.0 J/cm$^2$at 30 ${\mu}{\textrm}{m}$/s scan speed.

  • PDF

Development of a Surface-Strain Measurement System Using the Image Processing Technique (화상처리법을 이용한 곡면변형률 측정 시스템의 개발)

  • Han, Sang-Jun;Kim, Yeong-Su;Kim, Hyeong-Jong;O, Su-Ik
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.575-585
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study which consists of the hardware to capture and to display digital images. and the software to calculate the 3-D informations of grid points from two views. New or improved algorithms for the mapping and establishing correspondence of grid points and elements the camera calibration and the subpixel measurement of grid points are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are com-pared with those obtained by conventional manual methods.

  • PDF

A Study on Tensile Strength Dependent on Variation of Output Condition of the X-shape Infill Pattern using FFF-type 3D Printing (융합 필라멘트 제조 방식의 3D 프린팅을 이용한 X자 형상 내부 채움 패턴의 출력 옵션 변화에 따른 인장강도 연구)

  • D. H. Na;H. J. Kim;Y. H. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2024
  • Plastic, the main material of FFF-type 3D printing, exhibits lower strength compared to metal. research aimed at increasing strength is needed for use in various industrial fields. This study analyzed three X-shape infill patterns(grid, lines, zigzag) with similar internal lattice structure. Moreover, tensile test considering weight and printing time was conducted based on the infill line multiplier and infill overlap percentage. The three X-shape infill patterns(grid, lines, zigzag) showed differences in nozzle paths, material usage and printing time. When infill line multiplier increased, there was a proportional increase in tensile strength/weight and tensile strength/printing time. In terms of infill overlap percentage, the grid pattern at 50% and the zigzag and lines patterns at 75% demonstrated the most efficient performance.

An Expert System of the Very Thin Sheet Metal Press Die Automated Design for VFD Grid (진공형광소자 전극의 극박판 프레스 금형 자동설계 전문가 시스템)

  • 박상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.50-58
    • /
    • 1998
  • A proper model of expert system for the very thin sheet metal press die design has been suggested. Using the suggested model, an expert system of the very thin sheet metal press die has been developed. This study contains that the results from the developed system for three kinds of specimens have the adaptability in the actual site. In addition, the possibility for expansion of this system has been discussed. The developed system, which is based on the knowledge base, has been included in a lot of expert's technology in the practice field. C-language under the HP-UNIX system and CIS customer language of the EXCESS CAD/CAM system have been used as the overall CAD environment. Results from this system will provide effective aids to the designer in this field.

  • PDF

Computer-Aided Alloy Design of Insert Metal for Transient Liquid Phase Bonding of High Aluminum Ni-base Superalloys

  • Nishimotd, Kazutoshi;Saida, Kazuyoshi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.803-808
    • /
    • 2002
  • A computer-aided alloy-designing technique to develop the insert metal for transient liquid phase (TLP) bonding was applied to high aluminum Ni-base superalloys. The main procedure of a mathematical programming method was to obtain the optimal chemical composition through rationally compromising the plural objective performances of insert metal by a grid-search which involved data estimation from the limited experimental data using interpolation method. The objective function Z which was introduced as an index of bonding performance of insert metal involved the melting point, hardness (strength), formability of brittle phases and void ratio (bonding defects) in bond layer as the evaluating factors. The contour maps of objective function Z were also obtained applying the interpolation method. The compositions of Ni-3.0%Cr-4.0%B-0.5%Ce (for ${\gamma}$/${\gamma}$/${\beta}$ type alloy) and Ni3.5%Cr-3.5%B-3%Ti (for ${\gamma}$/${\gamma}$ type alloy) which optimized the objective function were determined as insert metal. SEM observations revealed that the microstructure in bond layers using the newly developed insert metals indicated quite sound morphologies without forming microconstituents and voids. The creep rupture properties of both joints were much improved compared to a commercial insert metal of MBF-80 (Ni-15.5%Cr-3.7%B), and were fairly comparable to those of base metals.

  • PDF

Thle New Design of a Large Area Dye-sensitized Solar Cell with Ag Grid for Improving a Design Characteristics (설계적 특성 개선을 위한 Ag 그리드를 가지는 대면적 염료감응형 태양전지의 새로운 디자인)

  • Choi, Jin-Young;Lee, Im-Geun;Hong, Ji-Tae;Kim, Mi-Jeong;Kim, Whi-Young;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.123-127
    • /
    • 2007
  • Up sizing of dye-sensitized solar cell(DSC) is the important technology to bring about commercialization of DSC. Several studies to obtain a stable large area DSC have been investigated in overseas laboratories, but have been hardly done in our country. In this study, up sizing technology of dye sensitized solar cells(DSCs) was investigated. We investigated low dark current materials for the current collecting grid. From the result, a new DSC module with metal grid was designed, and fabricated. For a new interconnection, both working and counter electrodes are alternately coupled on 10[cm]$\times$7[cm] substrate. We have achieved 68% of fill factor and photoelectric conversion efficiency of around 2.6% as the best results of new designed DSC structure.

Unsteady Conjugate Heat Transfer Analysis of a Cooled Turbine Nozzle with High Free Stream Turbulence

  • Seo, Doyoung;Hwang, Sunwoo;Son, Changmin;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.279-289
    • /
    • 2017
  • In this study, a series of conjugate heat transfer (CHT) analyses are conducted for a stage of a fully cooled high-pressure turbine (HPT) at elevated levels of free stream turbulence (Tu = 5% and 25.7%). The goal of the analyses is to investigate the influence of high turbulence intensity on the fluid-thermal characteristics of a nozzle guide vane (NGV). The turbine inlet temperature is defined by considering a typical radial temperature distribution factor (RTDF). The Unsteady Reynolds Average Navier-Stokes (URANS) CHT simulations are carried out using CFX 15.0, a commercial CFD package. The presented CFD modeling approach for high turbulence intensity is verified with the experimental data from two types of NASA C3X NGVs with films. The computation grid is generated for both the fluid and solid domains. The fluid domain grid is created using a tetrahedral grid system with prism layers because of its complex geometry, and the solid domain grid is composed of only tetrahedral elements. The analytical results are compared to understand the effect of turbulence on flow characteristics and metal temperature distributions. The results obtained in this study provide useful insights on the effects of high free stream turbulence and unsteadiness. The results also lead to the proposal of meaningful turbine design guidelines.