• Title/Summary/Keyword: Metal fuel

Search Result 855, Processing Time 0.041 seconds

A Study of Cadmium Recovery from LCC Crucible Using Solid-liquid Separation Method (고-액 분리법을 이용한 LCC 도가니에서의 카드뮴 회수에 관한 연구)

  • Park, Dae-Yeob;Kim, Tack-Jin;Kim, Jiyong;Kim, Kyung-Ryang;Kim, Si-Hyung;Shim, Joon-Bo;Peak, Seungwoo;Ahn, Do-Hee
    • Journal of Advanced Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.431-436
    • /
    • 2011
  • This study was carried out to reduce the problem during distillation process, which separate U, TRU (TRans Uranium) metal electro deposit, Cd and LiCl-KCl eutectic salt generating from LCC (Liquid Cadmium Cathode) electro winning process. The cadmium recovering apparatus was manufactured to separate for each metal using solid-liquid separation method. The apparatus consists of the first sieve for the separation of U and TRU metal electrodeposit, the second sieve for the separation of LiCl-KCl eutectic salt, cadmium collection basket, and a heating furnace. In addition, the size of each sieve is 2 mm to 3 mm. In this experiment, a metal wire was employed to replace TRU metal electrodeposit and U, which exist actually in a LCC crucible. In the solid state, The LiCl-KCl is separated at 340℃ at which the solid and the liquid of the remaining cadmium and LiCl-KCl eutectic salt coexists in each, after the metal wire separated at 500℃. As a result, it seems that it would be beneficial to set the processing condition in the distillation process with the additional treatment process of cadmium and LiCl-KCl eutectic salt.

A Study on Performance of Polymer Electrolyte Membrane Fuel Cell Using Metal Foam (Metal foam을 사용한 고분자 전해질 연료전지 성능 연구)

  • KIM, MYO-EUN;KIM, CHANG-SOO;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.554-559
    • /
    • 2015
  • Single cell of PEMFC (polymer electrolyte membrane fuel cell) is composed of bipolar plates, gasket, GDL and the MEA. Bipolar plate's function is the collecting electricity, helping oxygen/hydrogen gas diffuse evenly and draining the water and heat. In this work, we have conducted experiments to low contact resistance and improve the performance of a $25cm^2$ single cell by using metal forms. We have following experimental cases: 1) Conventional graphite serpentine channel bipolar plate; 2) Channel-less bipolar plate with nickel(Ni) based metal foam which coated by various materials. We focused the difference in contact resistance and performance of the single cell with metal foam depending on various coating materials. The experimental results show the similar performance of single cells between with serpentine channel bipolar plates and with channel-less bipolar plate using metal foams. In addition, single cell with metal foam shows potential to higher performance than conventional channel.

Analysis on the heat-resisting method of the electrolytic metal reduction reactor in the test facility for the spent fuel waste (사용후핵연료 시험시설에서 전기 금속 전환반응기의 내열 방안 분석)

  • 김영환;윤지섭;정재후;홍동희;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.776-779
    • /
    • 2003
  • To reduce the storage space of spent fuel used at the atomic power plants in the over the world, the uranium elements contained in the spent fuel is being extracted and effectively stored. For this, the spent fuel are oxidized and deoxidized. In this study, it is produced the heat-resisting methods about the spent fuel management technology research and test facility for the spent fuel waste for spent fuel minimized. The first considered processes in the facility are the electrolytic metal reduction reactor process. Since the electrolytic metal reduction reactor is operated at the high temperature range, we have to consider the heat-resisting methods for the devices. For the heat-resisting methods, we have searched and analyzed technical reference for the heat-resisting methods. We have calculated thermal stress and strain of each devices by the commercial analysis software, ANSYS. D.S. It is experimented for inspecting confidence rate of analysis results. By using the results, we have analyzed the problems of parts and determined the heat-resisting material, commercial parts, and the size of parts and O-ring. Based on these results, it is produced the heat-resisting methods of magnesia filter, cathode, and reactor for the electrolytic metal reduction reactor.

  • PDF

The Effect of Ion Exchange Membrane on the Electrical Conduction in Metal Fuel Cell (금속연료전지에서 이온교환막이 전기전도에 미치는 영향)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2235-2239
    • /
    • 2010
  • In this study, The cation exchange membrane and the anion exchange membrane affect in electrical conduction of metal fuel cell was investigated. Magnesium material as anode electrode and the NaCl solution dissolved with 5~15wt% as electrolyte were used for the metal fuel cell. It was found that magnesium slag where flows toward the air electrode was suppressed by using ion exchange membrane. The open circuit voltage variation during discharge has very flat pattern by using ion exchange membrane, but the case which is not the exchange membrane, the open circuit voltage increased according to time. When using the anion exchange membrane, the electric current was higher case of the cation exchange membrane, as a result of higher equivalent conductivity in anion Cl-. The cation exchange membrane was observed with the fact that the output power is excellent in compared with anion exchange membrane.

Development of Metaal Bipolar plates for Fuel Cell Vehicles (연료전지 차량용 금속분리판 개발)

  • Jin, Sang-Mun;Yang, Yoo-Chang;Kim, Sae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.331-334
    • /
    • 2009
  • Currently, the bipolar plates are fabricated mainly from graphite materials. However, metal bipolar plate are getting most attractive due to their good feasibility of mass production and low cost. In this study, metal bipolar plates for fuel cell Vehicles were developed with a concept based on the straight flow patterns to minimize the pressure drop and spring back. And molded gasket apply to the bipolar plate for improve sealing performance. Results show that the metal bipolar plate have a high potential to replace for graphite materials in fuel cell application.

  • PDF

Numerical Study on Flow Distribution in PEMFC with Metal foam Bipolar Plate (다공성 분리판을 적용한 고분자 전해질 연료전지의 유동 분포에 관한 전산해석 연구)

  • SONG, MYEONGHO;KIM, KYOUNGYOUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • It is important to uniformly supply the fuel gas into the reaction activity area in polymer electrolyte membrane fuel cell (PEMFC). Recent studies have shown that the cell performance can be significantly improved by employing metal foam gas distributor as compared with the conventional bipolar plate types. The metal foam gas distributor has been reported to be more efficient to fuel transport. In this study, three-dimensional computational fluid dynamics (CFD) simulations have been performed to examine the effects of metal foam flow field design on the fuel supply to the reaction site. Darcy's law is used for the flow in the porous media. By solving additional advection equation for fluid particle trajectory, the gas transport has been visualized and examined for various geometrical configuration of metal foam gas distributor.

Analysis of Hydrogen-tightness on the Metal Sealing of a Fuel Pipe for FCEV according to Material Change of the Fitting Body (체결부 재료에 따른 FCEV 연료파이프 메탈 씰링부의 기밀성 분석)

  • Lee, J.M.;Han, E.S.;Chon, M.S.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.266-274
    • /
    • 2019
  • Metal sealing is used to connecting the parts between valves and fuel pipes for a FCEV which utilizes hydrogen gas of 700 bar. Instead of general carbon steel, stainless steel is the primary material used to manufacture fuel pipes due to hydrogen embrittlement. The shape of deformation between metals is an important factor on the air-tightness of the metal to metal contact. Since the stainless steel pipe is hardened using the plastic forming during the tip shaping stage, this work hardening could have an effect on the deformed shape and characteristics of contact surfaces in fastening of pipes. In this paper, the deformation history of the pipe model was considered in order to analyze the hydrogen-tightness on the metal sealing part. The contact distance and the forward displacement for fastening were compared using experimental results and the simulation results. The simulation of the effect of material change on the fitting body demonstrated that the hardness or the strength of the formed tip of the pipe was designed to a proper valued level since the characteristics of the contact surface was exhibited better when the strength of the pipe was lower than that of the fitting body.

Emission Characteristics of PM10 and PM2.5 in Thermal Power Plants Using Different Fuel Types (연료별 화력발전시설의 미세먼지(PM10 및 PM2.5) 배출특성)

  • Park, Hyun-Soo;Lee, Duk-An;Yang, Jeong-Go;Jang, Seong-Guk;Kim, Hwan-Beom;Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.534-541
    • /
    • 2018
  • Concentrations of total particulate matter (TPM), $PM_{10}$ and $PM_{2.5}$ were measured at three different sites based on each different fuel type (solid, liquid and gas) used in thermal power plants operating in Yeosu and Gwangyang National Industrial Complexes during 2017. The highest concentrations of TPM, $PM_{10}$, and $PM_{2.5}$ were observed at the solid fuel facility, and these values were $3.356mg/Sm^3$, $2.342mg/Sm^3$ and $1.834mg/Sm^3$, respectively. The ratio of $PM_{2.5}$ to TPM was the highest value of 54.6% in solid fuel case, and the lowest was 35.7% found in liquid fuel case. As a result of analyzing 9 kinds of metal compound with respect to each particle size, the metal concentration of TPM is higher than those of $PM_{10}$ and $PM_{2.5}$ in all fuel types. Total concentrations of metal elements in TPM by fuel difference are $1.2702mg/Sm^3$ in solid fuel, 0.0603 mg/Sm3 in liquid fuel, and $0.0733mg/Sm^3$ in gas fuel, respectively. Relatively higher total metal concentration in gas fuel than in liquid fuel was found; and this could be higher Cr and Al concentrations in use of gas fuel. As a result of estimating the emission factors of each facility, in case of solid fuel, TPM emissions per electricity production were found to be 0.7080 kt/PJ, followed by liquid fuel and gas fuel. $PM_{10}$ and $PM_{2.5}$ emissions per hour of electricity production were similar to those of TPM.

The Evaluation of Minimum Cooling Period for Loading of PWR Spent Nuclear Fuel of a Dual Purpose Metal Cask (국내 경수로 사용후핵연료의 금속 겸용용기 장전을 위한 최소 냉각기간 평가)

  • Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.411-422
    • /
    • 2016
  • Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R&D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0~4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

Optimization of a Wire-Spacer Fuel Assembly of Liquid Metal reactor

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.240-243
    • /
    • 2005
  • This study deals with the shape optimization of a wire spacer fuel assembly of Liquid Metal Reactors (LMRs). The Response Surface based optimization Method is used as an optimization technique with the Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer using Shear Stress Transport (SST) turbulence model as a turbulence closure. Two design variables namely, pitch to fuel rod diameter ratio and lead length to fuel rod diameter ratio are selected. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with a weighting factor. Three level full-factorial method is used to determine the training points. In total, nine experiments have been performed numerically and the resulting datas have been analysed for optimization study. Also, a comparison has been made between the optimized surface and the reference one in this study.

  • PDF