• Title/Summary/Keyword: Metal fraction

Search Result 560, Processing Time 0.032 seconds

Microstructural Characteristics of 800 MPa Grade High Strength Steel Weld Metals (800 MPa급 고강도강 용접금속의 미세조직 특성 비교 연구)

  • Lee, Jae-Hee;Kim, Sang-Hoon;Yoon, Byung-Hyun;Kim, Hwan-Tae;Kil, Sang-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Microstructural characteristics of two high strength (600 MPa & 800 MPa) weld metals produced by flux-cored arc welding process (FCAW) were evaluated. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at relatively high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 85% acicular ferrite and 15% low temperature forming phases (bainite, martensite). The prior austenite grain size of 800 MPa grade weld metal was decreased by solute drag force. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by a transmission electron microscopy (TEM). In both 600 MPa and 800MPa grade weld metals, the inclusions were mainly consisted of Ti-oxide and Mn-oxide, and the average size of inclusions was $0.7{\mu}m$. The 800 MPa grade weld metal exhibited higher tensile strength and similar toughness compared with the 600 MPa grade weld metal. This result is mainly due to a higher fraction of low temperature products and a lower fraction of grain boundary ferrite in the 800 MPa grade weld metal.

Contamination of Heavy Metals from Dongmyeong Au-Ag Mine Area (동명 금-은 광산 주변의 중금속 오염)

  • 이광춘;김세현;이승호;서용찬
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Researches were carried out to investigate the characteristics and concentration of heavy metal elements of stream water through Dongmyoung abandoned metal mine and soil adjacent to the mine. The pH range of water was 5.9∼7.1 that implies the water environment was acidic to neutral. The contents and distribution aspects of heavy metals in water samples varied with geochemical characteristics of element, but the concentration of heavy metals has the tendency of increase closer to the mine in general. The results of soil analysis show that total heavy metal concentration of agricultural soil near mine was far lower than those of ore tailing and dumping site. Therefore, the effects of the abandoned mine on stream water and agricultural products were supposed to be insignificant, particularly because the portion of absorbed carbonates and reducible fractions among total heavy metal concentration was relatively lower than the other. Since, however total heavy metal concentrations of mining site were relatively higher than those of adjacent region, there is a possibility of heavy metal difussion when the chemical environment of the site changes due to migration of surface and underground water. It is suggested that the preventive measures for water and soil pollution by the heavy metals would be considered around the region.

Net-shape Manufacturing of Micro Porous Metal Components by Powder Injection Molding

  • Nishiyabu, Kazuaki;Matsuzaki, Satoru;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.93-94
    • /
    • 2006
  • A novel production method for porous metal components has been developed by applying powder space holder (PSH) method to metal powder injection molding (MIM) process. The PSH-MIM method has an industrial competitive advantage that is capable of net-shape manufacturing the micro-sized porous metal products with complicated shapes and controlled porosity and pore size. In this study, the small impeller with homogeneous micro-porous structure was manufactured by the PSH-MIM method. The effects of combinations in size and fraction of PMMA particle on dimensional tolerance and variation of sintered porous specimens were investigated. It was concluded that the PSH-MIM method could manufacture commercially microporous metal components with high dimensional accuracy.

  • PDF

Existing Forms of Heavy Metals in the Vicinity of a Smelter (제련소 주변토양 중금속 존재형태)

  • Woo, Sang-Duck;Kim, Geon-Ha;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.16-22
    • /
    • 2010
  • Heavy metals in soils exist in various forms dependent upon surrounding conditions. As the Janghang smelter area is of concern for its high elevated heavy metal concentrations, Korean government decided to remediate the area. Main objectives of this research were; to analyze heavy metal concentrations and their existing forms in the vicinity of the smelter; and to understand differences made by analysis techniques of heavy metals. Top soils of rice field, crop field, bare field, and forestry in the area were sampled and analyzed for their physicochemical characteristics. Concentrations of Cu, Cd, Pb, and As were analyzed with two pretreatment techniques adopted using 0.1 N HCl and aqua regia. To analyze existing forms of heavy metals, Tessier's schemes for sequential extraction technique were adopted. Exchangeable fraction and carbonate bound fraction of heavy metals may pose potential threat to environment and were in the order of Pb > As > Cu > Cd. If assessing mobile fraction of heavy metals by land uses, the order was forestry > bare land > crop field > rice field. When analyzed using Tessier's scheme, high ratio of residual fractions to total arsenic concentration should be considered for remediation design of the area.

Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water (과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구)

  • Heo, Hyo;Jerng, Dong Wook;Bang, In Cheol
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

Effect of Korea Ginseng Root on Detoxification of Heavy Metal, Mercury by Fusarium oxysporum (고려인삼이 Fusarium oxysporum에 의한 중금속 수은의 해독작용에 미치는 영향)

  • Kim, Young-Ho;Park, Eun-Kyung;Park, Kyu-jin
    • Journal of Ginseng Research
    • /
    • v.16 no.1
    • /
    • pp.24-30
    • /
    • 1992
  • Extracts of Panax ginseng root significantly induced tolerance of Fusarium oxysporum to heavy metal, mecury, as the fungal mycelial growth was less inhibited by mercury chloride on potato dextrose medium(PDA) amended with ginseng root than on the PDA with no ginseng amendment. The most favorable concentration of ginseng root powder in detoxification of mercury chloride was 1%. The induced tolerance of F. oxysporum to mercury chloride appeared to be rather due to absorption of ginseng components, and was not related to stimulation of mycelial growth of the fungus per so by ginseng treatment. Ginseng components responsible for inducing tolerance of the fungus to mercury were involved in the water fraction of the ginseng root extract, although the water fraction had no effect on enhancement of the mycelial growth on the medium without mercury chloride. The hexane fraction of ginseng root extract, by which the mycelial growth was stimulated, was not related to the inducement of the tolerance to mercury chloride. However, more tolerance to mercury chloride was noted in PDA with both the water and hexane fractions combined than with either of the two fractions. Six-year-old ginseng roots were more effective in detoxification of mercury chloride than 4-year-old ginsng roots, and American ginseng (P quinquifolium) had no or little effect on inducing tolerance of the fungus to mercury chloride. This method may be used to screen other natural materials for test in the detoxification of mercury chloride.

  • PDF

Effect of shield gas on the characteristics of $CO_2$ laser welded 600MPa grade high strength steel (600MPa급 자동차용 고장렬강판의 $CO_2$ 레이저 용접부의 특성에 미치는 보호가스의 영향)

  • Han Tae-Kyo;Lee Bong-Keun;Kang Chung-Yun
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.19-26
    • /
    • 2004
  • The effect of shield gas on the weldability, mechanical properties and formability of CO2 laser weld joint in 600MPa grade high strength steel was investigated. Bead on plate welds were made under various welding speed and shield gas. Tensile test was carried out under the load of perpendicular and parallel direction to the weld line, Formability of the joint was evaluated by Erichsen test. As the welding speed increases, the porosity fraction decreases. The porosity fraction in the joint used Ar-$50\%He$ mixed gas as a shield gas was lower than that of the joint used Ar gas. Hardness at the weld metal of full penetrated joint was nearly equal to that of water quenched raw metal. In a tensile test under a perpendicular load to the weld axis, strength and elongation of joint produced by optimum condition were nearly equal to those of base metal. However, the strength of joint in a tensile test under a parallel load to weld axis was higher than that of raw metal, but the elongation of joint was lower than that of raw metal. Elongation and formability were further increased by the method of using Ar+He mixed gas as a shield gas as compared with Ar gas. Formabilities of joints were recorded ranging from $58\%\;to\;70\%$ of that of base metal with different shield gases.

  • PDF

Multi-Step Reheating Process of Metal Matrix Composites for Thixoforming (Thixoforming을 위한 금속 복합재료의 다단 재가열 공정)

  • 허재찬;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.180-183
    • /
    • 1997
  • The forming process of metal matrix composites by the die casting and squeeze casting process are limited in size and dimension in term of final parts without machining. The thixoforming process for metal matrix composites has numerous advantages compared to die casting, squeeze casting and compocasting. The characteristics of thixoforming process can decrease the liquid segregation because of he improvement in fluidity in a globular microstructure state and utilizes flow without air entrapment. Therefore, in order to obtain the sound parts of metal matrix composites by using thixoforming process which as co-existing solidus-liquidus pahse, it si very important to obtain reheating condition. However, for he thixoforming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process.

  • PDF

Analysis for Properties of Ceramic/Metal Composite Based on Micromechanics of materials (세라믹/금속복합재료에 대한 미시역학적 특성해석)

  • 김병식;김태우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.144-148
    • /
    • 2001
  • A proper estimation of the mechanical properties for composites has been required for better design/selection of constituents for composite materials. Present investigation shows the simulation results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting transverse mean stress with the transverse mean strain was described for composites as a function of the volume fraction with two different types of interfacial bonding: (1)strongly bonded interface, and (2)no bonded interface. A two-dimensional finite element modeling and analysis were conducted based on the unit-cell concept with an assumption of a regular square arrangement of the reinforcement within the composite. The mean stress was generally increased with the ceramic volume fraction for composite with strong interface bonding. The micromechanics concept combined with finite element modeling for composite can be used in order to predict the transverse properties of composites with a priori known properties of constituents.

  • PDF

Experimental Investigation of the Dynamic Fracture Toughness for Aluminum Alumina Whisker Metal Matrix Composites (콤포케스팅법에 의해 제조된 알루미늄 금속복합재료의 동파괴 인성치에 관한 연구)

  • Kim, M.S.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.152-160
    • /
    • 1993
  • This paper presents experimental study of the static and dynamic fracture toughness behavior of a A1-6061 aluminum alloy reinforced alumina( .delta. -A1$_{2}$0$_{3}$) whiskers with 5%, 10%, 15% volume fraction. The static fracture tests using three-point bending specimen were performed by UTM25T. And drop weight impact tester performing dynamic fracture tests was used to measure dynamic locads applied to a fatigue-precracked specimes. The oneset of crack initiation was detected uwing a strain gage bonded near a crack tip. The value of static fracture toughness $K_{IC}$ and dynamic fracture toughness $K_{ID}$ were decided on the basis of linear elastic fracture mechanics. The effects of fiber volume fraction and loading on fracture toughness were investigated. The distribution of whiskers, bonding state and fracture interfaces involved in void, fiber pull-out state were investigated by optical microscopy(OM) and scanning electron microscopy(SEM)

  • PDF