• Title/Summary/Keyword: Metal ferrite

Search Result 227, Processing Time 0.021 seconds

A Study on Characteristics of Dissimilar Welds between Super Duplex Stainless Steel UNS S32750 and Carbon Steel A516-70 with FCAW (슈퍼듀플렉스 스테인리스강 UNS S32750과 탄소강 A516-70의 이종금속 FCA 용접 특성에 대한 연구)

  • Moon, In-June;Jang, Bok-Su;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.26-33
    • /
    • 2014
  • The metallurgical and mechanical characteristics, toughness and corrosion resistance of dissimilar welds between super duplex stainless steel UNS S32750 and carbon steel ASTM A516Gr.70 have been evaluated. Three heat inputs of 21.12, 24.00, 26.88kJ/cm were employed to make joints of dissimilar metals with flux cored arc welding(FCAW). Based on microstructural examination, vermicular ferrite was formed in the first layer of weld at low heat input(21.12kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.61 while acicular ferrite was formed in last layer of weld at high heat input(26.88kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.72. Ferrite percentage in dissimilar welds was lowest in the first layer of weld regardless of heat inputs and it gradually increased in the second and third layers of weld. Heat affected zone showed higher hardness than the weld metal although reheated zone showed lower hardness than weld metal due to the formation of secondary austenite. Tensile strengths of dissimilar welds increased with heat input and there was 100MPa difference. The corrosion test by ferric chloride solution showed that carbon steel had poor corrosion resistance and pitting corrosion occurred in the first layer(root pass) of weld due to the presence of reheated zone where secondary austenite was formed. The salt spray test of carbon steel showed that the surface only corroded but the amount of weight loss was extremely low.

Effect of the welding speed on the characteristics of Nd:YAG laser welds for automotive application : 600MPa PH high strength steel (600MPa급 자동차용 석출경화형 고장력강판 Nd:YAG 레이저 용접부의 특성에 미치는 용접속도의 영향)

  • Han, Tae-Kyo;Jung, Byung-Hun;Kang, Chung-Yun
    • Laser Solutions
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2007
  • The effect of welding speed on the weldability, microstructures, hardness, tensile property of Nd:YAG laser welding joint in 600MPa grade precipitation hardening high strength steel was investigated. A shielding gas was not used, and bead-on-plate welding was performed using various welding speeds at a power of 3.5kW. Porosity in the joints occurred at 1.8m/min, but were not observed over the welding speed of 2.1m/min. However, spatter occurred over the welding speed of 6.6m/min. The hardness was the highest at heat affected zone(HAZ) near fusion zone(FZ), and was decreased on approaching to the base metal. The maximum hardness increased with increasing welding speed. The microstructure of FZ was composed of coarse grain boundary ferrite and bainite(upper) but the HAZ near the FZ contained bainite(Lower) and fine ferrite at a low welding speed. With increasing welding speed, ferrite at the FZ and the HAZ became finely and upper binite changed to lower bainite. In a perpendicular tensile test to the weld line, all specimens were fractured at the base metal, and the tensile strength and the yield strength of joints was equal to those of raw material. Elongation was found to be lower than that of the raw material.

  • PDF

CO2 decomposition characteristics of Ba-ferrite powder (Ba-페라이트 분말을 이용한 이산화탄소 분해 특성)

  • Nam, Sung-Chan;Park, Sung-Youl;Jeon, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5357-5364
    • /
    • 2011
  • The objective of this study is development of carbon recycle technology which convert carbon dioxide captured from flue gas to carbon monoxide or carbon and reuse in industrial fields. Since carbon dioxide is very stable and difficult to decompose, metal oxide was used as activation agent for the decomposition of carbon dioxide at low temperature. Metal oxides which convert $CO_2$ to CO or carbon were prepared using Ba-ferrite by solid and hydrothermal synthesis. TPR/TPO and TGA were used in this study. The results of TPR by H2 and TPO by $CO_2$ showed that Ba-ferrite powders synthesized by hydrothermal method were better than those by solid method. TGA showed contrary results that reduction of Ba-ferrite powders synthesized using solid method by $H_2$ was 21.96 wt%, oxidation by $CO_2$ was 21.24 wt% and 96.72 wt% of $CO_2$ decomposition efficiency showing excellent oxidation-reduction characteristics at $500^{\circ}C$.

CO2 Decomposition Characteristics of Zn-ferrite Powder Prepared by Hydrothermal and Solid State Reaction (수열합성법과 고상법을 이용해 제조된 Zn-ferrite 분말의 이산화탄소 분해 특성)

  • Nam, Sung Chan;Park, Sung Youl;Yoon, Yeo Il;Jeong, Soon Kwan
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.555-561
    • /
    • 2011
  • The objective of this study is the development of carbon recycle technology which converts $CO_2$ captured from flue gas to CO or carbon and reuse in industrial fields. Since $CO_2$ is very stable and difficult to decompose, metal oxide was used as an activation agent for the decomposition of $CO_2$ at low temperature. Metal oxides which convert $CO_2$ to CO or carbon at $500^{\circ}C$ were prepared using Zn-ferrite by the solid state reaction and hydrothermal synthesis. The behaviors of $CO_2$ decomposition were studied using temperature programmed reduction/oxidation (TPR/TPO) and thermogravimetric analyzer (TGA). Zn-ferrite containing 5 wt% ZnO showed the largest reduction and oxidation. Reduction by $H_2$ was 26.53 wt%, oxidation by $CO_2$ was 25.73 wt% and 96.98% of adsorbed $CO_2$ was decomposed to $CO_2$ and carbon with excellent oxidation-reduction behaviors.

Effect of Heat Input and Interpass Temperature on the Strength and Impact Toughness of Multipass Weld Metal in 570MPa Grade Steel (570MPa급 용접구조용강 다층 용접금속의 강도 및 충격인성에 미치는 입열 및 패스간 온도의 영향)

  • Byun, Ji-Chul;Bang, Kook-Soo;Chang, Woong-Sung;Park, Chul-Gyu;Chung, Woo-Hyun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • 570MPa grade weldable steels were gas metal arc welded with various heat inputs and interpass temperatures using flux cored wires. Effects of heat input and interpass temperature on the strength and impact toughness of weld metal were investigated in terms of microstructural change, recovery of alloying elements, and the amount of reheated weld metal. Increase of heat input and interpass temperature resulted in decrease of weld metal strength. This is because of the small amount of acicular ferrite, large columnar size and low recovery of alloying elements such as manganese and silicon. In addition to the microstructural change, weld metal toughness was also influenced by the deposition sequence. It increased with an increase of the amount of reheated weld metal.

A Study of Tailored Blank Welding between Mild Steel and Zn-coated Steel Sheets by $CO_2$ Laser Beam ($CO_2$레이저빔에 의한 저탄소강판과 아연도금강판의 Tailored Blank 용접에 관한 연구)

  • 서종현;김도훈;유병길;이경돈
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.4-10
    • /
    • 1998
  • A basic research for tailored blank welding between mild steel and Zn-coated steel was carried out with $CO_2$ laser beam. The materials used in this work were low carbon steel sheet with a thickness of 1.2mm and Zn-coated steel sheet with the same thickness and 6.3$\mu$m Zn coating. Experiments were carried out by applying the Taguchi method in order to obtain optimized conditions for the application of tailored blank laser welding method in practical manufacturing process. Optical microscopy, XRD, SEM and TEM analysis were performed to observe microstructures and to determine the solidification mode of welded zone. Also mechanical properties were measured by microhardness test tensile test and Erichsen test in order to evaluate the formability of welded specimen. There was no trapped Zn in the fusion zone, and the phases in this region consisted of polygonal ferrite, quasi-polygonal ferrite, banitic ferrite and martensite. The elongation value of welded specimen was more than 80% of that value in the substrate and LDH value was more than 90% of that value in the substrate metal.

  • PDF

Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF

A Study on Microstructure and Thoughness of Electrogas Weldments (일렉트로가스 용접부의 조직 및 인성에 관한 연구)

  • 이해우;장태원;이윤수;석한길;강성원
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.68-74
    • /
    • 1996
  • The microstructure of HAZ and the mechanical properties in weldments such as hardness and toughness were studied for mild steel and AH36 grade TMCP steel, as increasing heat input with electrogas welding process. The results of this study can be summarized as follow: 1) In the HAZ of mild steel, the width of coarse grained zone was larger than that of the nomalized zone, however in the case of TMCP steel, the nomalized zone was wider than the coarse grained zone. 2) The grain size of HAZ become coarse with increasing heat input. And at the same heat input, the grain size of TMCP steel was more coarser than that of mild steel. 3) According to the change of heat input, the deviation of hardness values was not significant, and the maximum values of hardness was not in HAZ but in the weld metal. And the hardness values in root part was higher than in face part. 4) Even though the HAZ grain size of mild steel was larger than that of TMCP steel, the impact values for mild steel was higher than those for TMCP steel, and the impact values in face part was higher than those in root part.

  • PDF

A Study on the Ultraprecision Grinding for Brittle Materials With Electrolytic Dressing (전해드레싱에 의한 경취재료의 초정밀 연삭에 관한 연구)

  • 김정두;이연종;이창열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1486-1496
    • /
    • 1993
  • The diamond wheel with superabrasive is required for mirror-like surface grinding of brittle materials. But the conventional dressing mothod can not apply to the diamond wheel with superabrasive. Recently electrolytic dressing method was developed for cast-iron bonded diamond wheel with superabrasive. This technique can take replace of lapping and polishing. Using the electrolytic dressing, the surface roughness of workpiece was improved largely and grinding force was very low and the continuity of the grinding force was also very improved. In this study, the purpose is the realization of mirror-like surface grinding of ferrite with electrolytic dressing of metal bonded diamond wheel. For application of ultraprecision grinding for brittle material, superabrasive wheel, air spindle and inprocess electrolytic dressing were used. In addition, the effects of pick current and pulse width on ground surface were investigated, and the suitable dressing conditions for ferrite were found out.

A Study on the Mirror Surface Grinding for Brittle Materials with Inprocess E.D.M. Dressing (연속 방전드레싱에 의한 경취재료의 경면연삭에 관한 연구)

  • 김정두;이은상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.785-792
    • /
    • 1994
  • Ferrite is widely used in the material of magnetic head, but is difficult of grinding because of their brittleness and hardness. Therefore, diamond wheel with superabrasive is required for surface grinding of this brittle material. But the conventional dressing method can not apply to the diamond wheel with superabrasive. In this study describes a newly proposed method for carrying out effective inprocess dressing of diamond wheel with superabrasive. Using the IEDD the surface roughness of workpiece was improved and grinding force was very low. Resently IEDD is good method to obtain the efficiency grinding and surface grinding of brittle materials.