• Title/Summary/Keyword: Metal device

Search Result 1,310, Processing Time 0.033 seconds

Results of Culture Test at the Time of Removal of Metal Implants Used for Ankle Fracture Management (족관절 골절 치료에 사용한 금속 내고정물 제거 수술 시 시행한 균 배양 검사의 결과)

  • Chung, Hyung-Jin;Bae, Su-Young;Yu, Jae-Ha
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.2
    • /
    • pp.68-71
    • /
    • 2014
  • Purpose: The purpose of this study is to report the results of culture test at the time of removal of metal devices used for management of ankle fractures and for analysis of contributing factors. Materials and Methods: We reviewed medical records of 132 patients with lower tibia and ankle fracture who had their metal devices removed during the period from January 2010 to February 2014. Patients with clinical signs of infection were excluded. Culture test was performed by taking the granulation tissue around the metal device at the time of removal. We divided the subjects into two groups, culture positive and negative. We then performed a retrospective review of each medical record of multiple factors that might contribute to the culture results, including laboratory results, medical history, material and size of metal device, indwelling period, and whether or not it was open injury. Results: Among 132 cases, six were culture positive. Enterococcus was detected in two cases and the others were Staphylococcus. No significant difference in medical history of patients and laboratory results, including C-reactive protein level, was observed between the culture positive and negative group. Culture positive rate was 5.4% in titanium and 3.9% in stainless steel. In terms of metal size, culture positive rate was 5.1% in small plates, 6.7% in large plates, and culture negative in intramedullary nails. The average indwelling period of metal device was 61.5 weeks in the culture positive group, and 68.6 weeks in the negative group. Nine cases were open fractures and all were in the culture negative group. Conclusion: Whether or not the culture result was positive, there were no meaningful contributing factors. Presence of bacterium on the metal device could not be screened by any laboratory results or other factors.

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

Reliability of Metal Electrode for Flexible Electronics (유연성 소자용 금속 전극의 신뢰성 연구 동향)

  • Kim, Byoung-Joon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Recently, various types of flexible devices such as flexible displays, batteries, e-skins and solar cell panels have been reported. Most of the researches focus on the development of high performance flexible device. However, to realize these flexible devices, the long-term reliability should be guaranteed during the repeated deformations of flexible devices because the direct mechanical stress would be applied on the electronic devices unlike the rigid Si-based devices. Among various materials consisting electronics devices, metal electrode is one of the weakest parts against mechanical deformation because the mechanical and electrical properties of metal films degrade gradually due to fatigue damage during repeated deformations. This article reviews the researches of fatigue behavior of thin metal film, and introduces the methods to enhance the reliability of metal electrode for flexible device.

Implementation of On-Device AI System for Drone Operated Metal Detection with Magneto-Impedance Sensor

  • Jinbin Kim;Seongchan Park;Yunki Jeong;Hobyung Chae;Seunghyun Lee;Soonchul Kwon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.101-108
    • /
    • 2024
  • This paper addresses the implementation of an on-device AI-based metal detection system using a Magneto-Impedance Sensor. Performing calculations on the AI device itself is essential, especially for unmanned aerial vehicles such as drones, where communication capabilities may be limited. Consequently, a system capable of analyzing data directly on the device is required. We propose a lightweight gated recurrent unit (GRU) model that can be operated on a drone. Additionally, we have implemented a real-time detection system on a CPU embedded system. The signals obtained from the Magneto-Impedance Sensor are processed in real-time by a Raspberry Pi 4 Model B. During the experiment, the drone flew freely at an altitude ranging from 1 to 10 meters in an open area where metal objects were placed. A total of 20,000,000 sequences of experimental data were acquired, with the data split into training, validation, and test sets in an 8:1:1 ratio. The results of the experiment demonstrated an accuracy of 94.5% and an inference time of 9.8 milliseconds. This study indicates that the proposed system is potentially applicable to unmanned metal detection drones.

Resistive Switching Characteristics of Amorphous GeSe ReRAM without Metalic Filaments Conduction

  • Nam, Gi-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.368.1-368.1
    • /
    • 2014
  • We proposed amorphous GeSe-based ReRAM device of metal-insulator-metal (M-I-M) structure. The operation characteristics of memory device occured unipolar switching characteristics. By introducing the concepts of valance-alternation-pairs (VAPs) and chalcogen vacancies, the unipolar resistive switching operation had been explained. In addition, the current transport behavior were analyzed with space charge effect of VAPs, Schottky emission in metal/GeSe interface and P-F emission by GeSe bulk trap in mind. The GeSe ReRAM device of M-I-M structure indicated the stable memory switching characteristics. Furthermore, excellent stability, endurance and retention characteristics were also verified.

  • PDF

Hydrogen production with high temperature solar heat thermochemical cycle using NiFe2O4/m-ZrO2 device (NiFe2O4/m-ZrO2 device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Shin, Il-Yoong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • Two-step thermochemical cycle using ferrite-oxide($Fe_3O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The $m-ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30mL.

Resistance Switching Mechanism of Metal-Oxide Nano-Particles Memory on Graphene Layer

  • Lee, Dong-Uk;Kim, Dong-Wook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.318-318
    • /
    • 2012
  • A graphene layer is most important materials in resent year to enhance the electrical properties of semiconductor device due to high mobility, flexibility, strong mechanical resistance and transparency[1,2]. The resistance switching memory with the graphene layer have been reported for next generation nonvolatile memory device[3,4]. Also, the graphene layer is able to improve the electrical properties of memory device because of the high mobility and current density. In this study, the resistance switching memory device with metal-oxide nano-particles embedded in polyimide layer on the graphene mono-layer were fabricated. At first, the graphene layer was deposited $SiO_2$/Si substrate by using chemical vapor deposition. Then, a biphenyl-tetracarboxylic dianhydride-phenylene diamine poly-amic-acid was spin coated on the deposited metal layer on the graphene mono-layer. Then the samples were cured at $400^{\circ}C$ for 1 hour in $N_2$ atmosphere after drying at $135^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was done by a thermal evaporator. The electrical properties of device were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. We will discuss the switching mechanism of memory device with metal-oxide nano-particles on the graphene mono-layer.

  • PDF

A Study on the Interface Properties of Metal/Organic Films/Metal (Metal/Organic Films/Metal에서 계면특성에 관한 연구)

  • Song, Jin-Won;Cho, Su-Young;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.723-726
    • /
    • 2002
  • We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 10[mN/m]. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/Poly-$\gamma$ Benzyl $_D$-Glutamate/Al; the number of accumulated layers is 1, 3, 5 and 7. Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V]. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. LB film accumulated by monolayer on an ITO. In the cyclicvoltammetry, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in $LiBF_4$ solution, stable up to 0.9V vs. Ag/AgCl.

  • PDF

Multivariate Monitoring of the Metal Frame Process in Mobile Device Manufacturing (실시간 설비데이터를 활용한 휴대폰 메탈 프레임 공정의 다변량 모니터링)

  • Kang, Seong Hyeon;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.395-403
    • /
    • 2016
  • In mobile industry, using a metal frame of devices is rapidly increased for thin and stylish designs. However, fabricating metal is one of the difficult processes because the sophisticated control of equipment is required during the whole machining time. In this study, we present an efficient multivariate monitoring procedure for the metal frame process in mobile device manufacturing. The effectiveness of the proposed procedure is demonstrated by real data from the mobile plant in one of the leading mobile companies in South Korea.

Characteristics of top emission PLED by metal anodes (금속 애노드의 종류에 따른 Top Emission 특성 평가)

  • Lee, Chan-Jae;Moon, Dae-Kyu;Kwak, Min-Gi;Kim, Young-Hoon;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.968-971
    • /
    • 2002
  • Hole injection characteristics have been investigated with various metal anodes such as Ni, Pt, Cu, and AI for the top emission polymer light emitting diodes (PLEDs). Devices were composed of metal anode, Poly(3,4-ethylenedioxythiophene) doped with polystyrene sultponated acid (PEDT:PSS), poly [2-methoxy-5-(2-ethylhexyoxy)-1,4-phenylene-vinylene] (MEH-PPV) and Al cathode. The hole injection from ITO anode has been also investigated for the comparison. The I-V characteristics of the PLEDs with different metal anodes were measured. The work function of the anode is strongly related to the hole injection of the device. The current density of the device with Ni anode with higher work function was higher than that of the device with ITO or AI anode at the same operating voltage.

  • PDF