• Title/Summary/Keyword: Metal contamination

Search Result 692, Processing Time 0.028 seconds

Distribution of Heavy Metals in the Soils of Hanam City. (경기도 하남시 토양의 중금속 함량 분포 조사)

  • Kim, Kye-Hoon;Kim, Kwon-Rae
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.345-350
    • /
    • 2000
  • The objectives of this study were to find out distribution of heavy metal contents in the soils of Hanam city and to provide base-line data towards development of an eco-city Hanam. One hundred surface soil (0-20 cm) samples were collected from rice paddy field, cultivated upland, forest, riverside and other areas. The samples were air-dried, sieved to pass through 2 mm sieves, followed by analyses for As, Cd, Cu, Pb and Zn by the standard method set by the ministry of environment. All the average heavy metal contents were close to background level and were much lower than concern level of the Soil Environment Conservation Act of Korea. However, some individual heavy metal contents were higher than the action level. Since natural environment including soil environment of Hanam city is being destroyed rapidly and the number of the sampling points allocated to Hanam city based on the soil contamination monitoring network of the ministry of environment is only 6, an in-depth soil survey for contamination of Hanam city is highly recommended.

  • PDF

Heavy Metal Contamination in Soils and Groundwater in the Vicinity of the Sindae-dong Waste Disposal Site, Taejon (대전시 신대동 폐기물매립지 주변지역에서의 지하수 및 토양의 중금속오염)

  • 김경웅;손호웅
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.85-89
    • /
    • 1994
  • Groundwater and soil contamination by the leak of leachates from the waste disposal site (WDS) is one of the serious environmental problems, and leachates are generally produced by the biogeochmical decomposition and/or precipitation in the WDS. At the Sindae-dong waste disposal site in Taejon, the average Cu, Pb and Zn concentrations in the surrounding soils are higher than those in other Korean soils but these are not high enough to cause any harmful effect to man through the crop plants. Copper, Pb and Zn are not detected in the groundwater samples but the pH of the sample is 5.6 which is not suitable for the drinking water. In contaminated soil samples, the heavy metal concentrations are higher in subsurface soil than in surface soil and it may be influenced by the leachates in groundwater. With the electric resistivity method, the water contains layers are found in contaminated soils and the resistivity values are considerably low because of the dispersion of plume by the leak of leachates. According to the distance from the leak point of leachate, resistivity values increased and heavy metal concentraions in soils decreased due to the reduction of plume.

  • PDF

Geochemical Characteristics and Contamination of Surface Sediments in Upper Yeongsan River System (상류수계 영산강 하상퇴적물의 지화학적 특성과 오염)

  • Oh, Kang-Ho;Kim, Joo-Yong;Koh, Yeong-Koo;Youn, Seok-Tai;Seo, Goo-Won;Park, Bae-Young;Shin, Sang-Eun;Kim, Hai-Gyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.520-527
    • /
    • 2005
  • In order to investigate the geochemical characteristics of surface sediments in streams of upper Yeongsan River drainage system, sediment samples from the main stream of Yeongsan river, Hwangryong river, Gwangju and Jiseok streams were collected and analyzed for grain size and metal and organic carbon contents. The metal contents in the sediments are mainly dependent on organic matter contents in the domestic sewage, grain size of the sediments and geology around the streams. Enrichment factor (EF) and index of geoaccumulation (Igeo) representing the degree of metal contamination in the sediments are relatively low in the main stream of Yeongsan river main stream, Hwangryong river and Jiseok stream. However, those of Gwangju stream show the EF maximum values of P=8.30, Cu=5.55, Zn=14.29 and Pb=7.45 and the Igeo maximum values of P=3.58, Cu=4.43, Zn=3.22 and Pb=1.59.

Urine and Hair Metal Concentrations in Subjects with Long Term Intake of Herbal Medicine

  • Park Yeong-Chul;Lee Sun-Dong;Park Hae-Mo;Kim Jong-Bong
    • Toxicological Research
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2006
  • One of the main attractions of treatment with herbal medicine is its apparent lack of side effects compared with the drug therapies used in allopathic medicine. However, evidence from various countries suggest that Asian herbal medicine carry a significant risk of contamination with toxic heavy metals at levels that may seriously threaten health. The aims of this study were to analyze and compare concentrations of heavy metals in urine and hair from 184 patients taking herbal medicines in the form of decoctions and/or pills in comparison to 101 control subjects taking either Western or no medications. Levels of metal concentrations exceeding WHO reference values were observed in a number of hair and urine samples for all subjects. After adjusting for potential confounders, taking decoctions or pills was associated with higher levels of some metals (such as Cu, Pb in urine), as well a higher odds ratio of exceeding the upper limit of reference ranges for Pb, Hg in hair. In contrast, taking decoctions or pills was associated with lower levels of some metals (such as Cu in urine and Cd, Cu, Hg, Pb in hair), suggesting that some herbal medicines may have a chelating effect on heavy metals in the body. Overall, the results obtained in the study show a mixed picture and suggest that heavy metals contamination in herbs is sometimes present, but may also be counteracted by the potential for some herbal medicines to act as chelating agents. Further study must be followed to obtain more concrete evidence.

Environmental Contamination of the Vinylhouse and Human Exposure to Heavy Metals (비닐하우스 내부의 환경오염 및 인체의 중금속에 대한 노출)

  • Yang, Jae-Ho;Park, Jung-Han;Lee, Ju-Young
    • Journal of agricultural medicine and community health
    • /
    • v.18 no.2
    • /
    • pp.153-160
    • /
    • 1993
  • Health complaints among vinylhouse workers in Sungjoo county, Kyungpook province led to the investigation of heavy metal levels of air, soil and humans as well as physical conditions of the vinylhouse. The average temperature and humidity inside the vinylhouse were 8 higher and 10% point lower, respectively, as compared to the outside. While discomfort index(D. I.) outside was pleasant level(69.2), D. I. inside was 82 at which point 100% of people feels discomfort. Cadmium concentration of soils inside the vinylhouse(0.116 mg/kg) was 1.8 times higher than the soils outside. Arsenic concentration of soils inside the vinylhouse(4.882 mg/kg) was only slightly higher than the soils outside(4.182 ng/kg). However, both heavy metal concentrations detected in soils inside or outside the vinylhouse were within the normal range. Analysis of 10 air samples taken inside the vinylhouse showed that only one sample had a cadmium concentration above the detectable level and the rest of samples were below the detectable levels. While there were no difference of arsenic concentrations in urine between male and female, cadmium concentrations in urine samples of female (3.31 ug/l) was slightly higher than male(2.38 ug/l). Age-dependent increases of cadmium concentrations in urine samples were also observed. However, there was no concentration difference of these heavy metals in urine between vinylhouse workers and non-vinylhouse workers. Urine concentrations of cadmium and arsenic detected from vinylhouse workers or non-vinylhouse workers were within the normal range. The present study represents a first attempt to evaluate physical and environmental risk factors of the vinylhouse affecting the vinylhouse farmer's health. The study revealed that, while physical conditions of the vinylhouse such as temperature and humidity are the possible factors associated with the farmer's complaints, environmental contamination as judged from heavy metal levels in soil, air and humans is not a risk factor contributing to the vinylhouse farmer's health problem.

  • PDF

Heavy Metal Contamination in Roadside Sediments within the Watershed of the Hoidong Reservoir in Busan City (부산시 회동저수지 집수분지 내 주요 도로변 퇴적물의 중금속 오염 평가)

  • Youm Seung-Jun;Lee Pyeong-Koo;Yeon Kyu-Hun;Kang Min-Ju
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.247-260
    • /
    • 2005
  • Extractable concentrations (0.1 N & 1.0 N HCI) of heavy metals in roadside sediments are lower than guidelines for soil recommended by Ministry of Environment. Heavy traffic areas (such as No. 7 national road) show high contents of heavy metals, especially, at curved areas, gully pot, crackdown areas on overspeed, pedestrian crossing etc. Fine fractions $(<63\;{\mu}m)$ of roadside sediments have the highest concentrations of heavy metals, but mass loadings of heavy metal are determined by coarse fractions $(>100{\mu}m)$, due to washing out of fine fraction sediment by runoff water. Proper treatment facilities are needed to control the inflow of fine roadside sediments from No. 7 national road and bridge such as Hanmul bridge.

Investigation on soil contamination and its remediation system in the vicinity of abandoned Au-Ag mine in Korea (휴/폐광 금은광산 주변의 토양오염조사와 복구시스템 연구)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.73-82
    • /
    • 1999
  • The objectives of this study are to investigate soil contamination in the vicinity of abandoned Au-Ag mine and to apply a remediation technique of liming to tailings. In the study area of the Imcheon Au-Ag mine, soils were sampled in and around the mine the analyzed by Atomic Absorption Spectrometry extracted by both 0.1N HCl and aqua regia. Elevated levels of Cd, Cu, Pb and Zn concentrations extracted by 0.1N HCl were found in soils taken from tailings site. These high contents directly influenced metal concentrations in soils taken in the vicinity of the site. This is mainly due to clastic movement by wind and effluent of mine waste water. In addition, relatively enriched concentrations of the metals were found in soils extrated by aqua regia due to strong decomposition of the samples compared with 0.1N HCl extration. According to the statistical approach, metal concentrations in soils by 0.1N HCl had a positive correlation with those by aqua regia extraction. Mine waste waters and stream waters were also sampled around the mine in spring and summer and analyzed by AAS for Cd, Cu, Pb and Zn, and by Ion Chromatography for anions. Like soils developed over tailings, significant levels of metals and sulphates were found in the mine waste waters ranging of 0.2~0.3, 0.5~2.0, 0.2~2.8, 30~50 and 1,240~4,700 mg/l of Cd, Cu, Pb, Zn and $SO_4^{2-}$, respectively. These elevated levels influenced in the stream waters in the vicinity of the tailings site. In seasonal variation of metal and anion contents, relatively high levels were found in waters sampled on summer due to leaching the metals and anions from tailings by rain. This study also examined the possibility of lime treatment for remediation of acid mine tailings and assumed to be 46 tones of pulverized lime for neutralization of the tailings.

  • PDF

Studies on Heavy Metal Contamination of Agricultural Products, Soils and Irrigation Waters in Abandoned Mines (폐광산지역 농산물, 토양 및 농경수의 중금속오염에 관한 연구)

  • 김미혜;소유섭;김은정;정소영;홍무기
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.4
    • /
    • pp.178-182
    • /
    • 2002
  • This study was conducted to estimate the status of heavy metal contamination in agricultural products (n = 280), soils (n = 280), and irrigation waters (n = 48) in abandoned mines & normal farm lands (n = 8). The samples were digested with acids, then analyzed fur the contents of lead (Pb), cadmium (Cd), copper (Cu), mercury (Hg), arsenic (As) and chrome (Cr) by an inductively coupled plasma spectrometer (ICP) and graphite- atomic absorption spectrophotometer (AAS). The contents of Hg were determined using a mercury analyzer. Abandoned mines had soils with higher contents of heavy metals except Cr and irrigation waters with higher heavy metals except Hg, compared to those of normal farmlands. The contents of heavy metals in agriculture products varied depending types of products. Agricultural products in abandoned mines generally showed with higher contents of heavy metals except Cu, compared to those of normal farmlands. There was no significant relationship in heavy metal contents between agricultural products and soils (p > 0.05). It is suggested that heavy metals of agricultural products and soils in abandoned mines should be continuously monitored.

The Contents of Heavy Metals (Cd, Cr, As, Pb, Ni, and Sn) in the Selected Commercial Yam Powder Products in South Korea

  • Shin, Mee-Young;Cho, Young-Eun;Park, Chana;Sohn, Ho-Yong;Lim, Jae-Hwan;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Yam (Dioscorea) has long been used as foods and folk medicine with the approved positive effects for health promotion. Although consumption of yam products is increasing for health promotion, reports for the metal contamination in commercial yam powder products to protect the consumers are lacking. In this study, we aimed to assess whether the commercial yam powder products were heavy metal contaminated or not using the yam products from six commercial products from various places in South Korea. The contents of heavy metals (Cd, Cr, As, Pb, Ni, and Sn) in yam powder products were measured and compared to national and international food standard levels. Also, the metal contamination was monitored during the food manufacturing steps. The study results showed that the contents of heavy metals (Cd, Cr, As, and Pb) in yam powder products are similar to those in national 'roots and tubers' as well as in various crops. In comparison to three international standard levels (EU, Codex and Korea), Cd content in yam powder products was lower but Pb content was 5 times higher. Also, Pb, Ni, and Sn may have the potential to be contaminated during food manufacturing steps. In conclusion, the level of heavy metals (Cd, Cr, As, Ni, and Sn) except Pb is considered relatively safe on comparison to national and international food standard levels.

Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer

  • Huo, Yue;Kang, Jong Pyo;Ahn, Jong Chan;Kim, Yeon Ju;Piao, Chun Hong;Yang, Dong Uk;Yang, Deok Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.218-227
    • /
    • 2021
  • Background: Panax ginseng is one of the most important medicinal plants and is usually harvested after 5 to 6 years of cultivation in Korea. Heavy metal (HM) exposure is a type of abiotic stress that can induce oxidative stress and decrease the quality of the ginseng crop. Siderophore-producing rhizobacteria (SPR) may be capable of bioremediating HM contamination. Methods: Several isolates from ginseng rhizosphere were evaluated by in vitro screening of their plant growth-promoting traits and HM resistance. Subsequently, in planta (pot tests) and in vitro (medium tests) were designed to investigate the SPR ability to reduce oxidative stress and enhance HM resistance in P. ginseng inoculated with the SPR candidate. Results: In vitro tests revealed that the siderophore-producing Mesorhizobium panacihumi DCY119T had higher HM resistance than the other tested isolates and was selected as the SPR candidate. In the planta experiments, 2-year-old ginseng seedlings exposed to 25 mL (500 mM) Fe solution had lower biomass and higher reactive oxygen species level than control seedlings. In contrast, seedlings treated with 108 CFU/mL DCY119T for 10 minutes had higher biomass and higher levels of antioxidant genes and nonenzymatic antioxidant chemicals than untreated seedlings. When Fe concentration in the medium was increased, DCY119T can produce siderophores and scavenge reactive oxygen species to reduce Fe toxicity in addition to providing indole-3-acetic acid to promote seedling growth, thereby conferring inoculated ginseng with HM resistance. Conclusions: It was confirmed that SPR DCY119T can potentially be used for bioremediation of HM contamination.