• Title/Summary/Keyword: Metal contamination

Search Result 692, Processing Time 0.021 seconds

Geochemical Characteristics and Contamination Assessment of Surface Sediments in Lower Yeongsan River System (영산강 하류권역 하상퇴적물의 지화학적 특성과 오염평가)

  • Youn, Seok-Tai;Koh, Yeong-Koo;Oh, Kang-Ho;Moon, Byoung-Chan;Kim, Hai-Gyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.5
    • /
    • pp.251-262
    • /
    • 2004
  • In order to investigate the geochemical characteristics of surface sediments in lower Yeongsan river system, sediment samples from the main stream of Yeongsan river, Gomakwon and Hampyeong streams were collected and analyzed for grain size and metal and organic carbon contents. The sediment types of the streams widely vary from pebble to mud. The metal contents in the sediments are mainly dependent on grain size of the sediments, geology around the streams and organic matter contents from the domestic sewage. Enrichment factor (EF) representing the degree of metal contamination in the sediments are relatively low in the study area. But, high Zn and Pb values seem to be from the study area, partly.

Geochemical Behaviors and Environmental Changes of Bottom Sediments in Streams of Gwangju Metropolitan City (광주광역시를 관류하는 하천 표층퇴적물의 지구화학적 거동과 환경 변화)

  • Shin, Sang-Eun;Oh, Kang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • Considering to the geochemical behaviors and environmental changes of bottom sediments in streams, Gwangju metropolitan city, this study focuses to analyses on grain sizes, metal elements and organic carbons in sediment samples from Yeongsan and Hwangryong rivers, and Gwangju stream. In the sediments, contents of Cu, Zn, Pb, P and TOC were highly variable, in the case of Gwangju stream particularly. Yenogsan and Hwangryong rivers are influenced by grain sizes and surrounding geological settings and Gwangju stream is connected to organic matters related to life fouls and so forth, with respect to the geochemical behaviorof bottom sediments. Li, Zn, Pb and Cu were enriched in Yeongsan and Hwangryong rivers and Li, Cu, Zn, Pb and P enriched in Gwangju stream, respectively. In the heavy metal contamination of above drainages, the site mutually connected Seobang(GJ 4) with Donggye(GJ 7) streams shows the highest values, in peculiar. It is inferred that those contamination values are mainly related with urban foul waters in the city.

Risk Assessment for Farmers in the Vicinity of Abandoned Nokdong Mine in South Korea

  • Park, Jeong-Hun;Choi, Kyoung-Kyoon
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • A risk assessment of environmental media was performed for the inhabitants in the area of the abandoned Nokdong metal mine. Soil, groundwater, and crop samples were collected from September to October 2008 around the mine. After pretreatment of these samples, metal concentrations were measured, and a risk assessment was performed using the Korean soil-contamination risk assessment guidelines. Lead (Pb) and arsenic (As) intake rates were the highest for inhalation of soil dust. The cancer risks from ingestion of As-contaminated groundwater, inhalation of As-, Cd-, and Pb-contaminated soils, and contact of As-contaminated soils exceeded the acceptable risk. The sum of all carcinogenic risks was $9.29{\times}10^{-3}$. The non-carcinogenic risk was highest for ingestion of As-contaminated water (11.0), followed, in descending order, by inhalation of Hg-contaminated soil and ingestion of Pb-contaminated water. Most of the risks were associated with As, Cd, Pb, and Hg contamination, and therefore, these metals were considered to be potential toxic carcinogens and non-carcinogens for humans in this area. In this study, the non-carcinogenic risks of ingestion of contaminated water or crops, as well as those associated with the inhalation of soil dust were observed.

Heavy Metal Concentrations in Soils and Crops in the Poongwon Mine Area (풍원광산 지역의 토양 및 농작물 중금속 오염)

  • Kim, Jakwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • Abandoned mines release acid mine drainage and cause the contamination of soil and crops around the mine area. The objective of current study is to evaluate effect of mine on the soil and crop contamination. Soils, water, and crops were collected and analyzed, and the heavy metal data were classified into types of the soil, types of crops, and distance from the minehead. Surface soils of the mine area were highly contaminated with heavy metals, especially with zinc and lead. Tailings and cultivated paddy soils were also highly contaminated. Heavy metal concentrations upon distance from minehead decrease steadily as the distance from the minehead increase. The correlation between heavy metals was extracted from soils and the content in the rice samples showed a positive relation for arsenic and cadmium but not a meaningful relation for other metals.

A Study on the heavy metal contents in the soils and vegetables (중금속에 의한 토양오염과 그 작물함량에 관한 연구)

  • 김명미;고영수
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.1
    • /
    • pp.51-56
    • /
    • 1986
  • In the particular area the heavy metal concentrations in the soil were determined and compared to the contents in vegetables which were grown on the soil. Simultaneously the degree of contamination was examined. Samples were collected from Chinese cabbage, radish and Altari-mu, together with the soil on which the three kinds of vegetables have grown. The sites of samples collection were Jinguan-sa(non-polluted area) and Sangaedong(polluted area). The contents of cadimium, copper, lead and zinc were determined by means of atomic absorption spectro-photometer. The results obtained were as follows; 1. In soils, the average contents of heavy metal in Jinguan-sa area (Cd; 0.15ppm, Cu; 0.15ppm, Zn; 11.5ppm) were lower than those in sangye-dong(Cd; 0.26ppm, Cu; 13.0ppm, Zn; 17.1ppm). 2. In vegetables, the average have metal contents in Jinguan-sa were cadmium; 0.11ppm, copper; 5.29ppm, zinc; 18.75ppm and the average contents in Sangye-dong were cadmium; 0.16ppm, copper; 6.64ppm, lead; 0.14ppm, zinc; 15.01ppm. 3. The contents of lead showed zero ppm in Jinguan-sa area(soil and vegetables). In vegetables difference in concentration of heavy metals was not observed between reclaimed area and non reclaimed area. Statistical analysis showed that no correlation in the heavy metal concentrations between those in soils and in vegetables.

  • PDF

영산강 하상퇴적물의 중금속 함량

  • 조영길;김주용
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.281-290
    • /
    • 1998
  • Thirty-eight sediment samples collected from the Youngsan River channel were analysed for Fe, Mn, Co, Cr, Cu, Nl, Zn and Pb to recognize the extent of contamination. Results showed that a wide range of contents was apparent far every metal over the study area. These differences have been mainly related to the textural variability of sediments. Exceptions to this were fecund in the contents of Cu, Zn, Pb and possibly Mn. The contents of Cu, Zn, Pb and Mn were particularly higher in the sediments loom the confluence of tributaries. Downstream profile of metal/Al ratios indicates that pollutant inputs from the Kwangju tributary are mainly responsible for enrichment of these metals in bed sediments of the Young-san River.

  • PDF

Heavy Metal Distribution in Soils from the Maehyang-ri Inland Shooting Range Area (매향리 내륙 사격장 토양의 중금속 오염 분포)

  • Lee, Jun-Ho;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • This study was conducted to evaluate the heavy metal contamination in the soils of Maehyang-ri inland shooting range area. The texture of the Maehyang-ri inland shooting range soil was sandy. Extraction of heavy metals reached quasi-equilibrium within 6 hours using shaking with 0.1 N HCl. 95% and 94% of extraction efficiency was observed for Cu and Pb in the Maehyang-ri shooting range soils, respectively. And Cu and Pb contamination of level of the T-1 region soil was $114.4{\pm}5.7mg/kg$ and $362.3{\pm}20.5mg/kg$. This may be due to the effects of mineralogical factor, soil particle size and un-residual fractions such as exchangeable, carbonate, Fe-Mn oxide and organic+sulfide.

The Characteristics of Heavy Metal Contamination in Tailings and Soils in the Vicinity of the Palbong Mine, Korea (팔봉광산 선광광미와 주변토양의 중금속 오염 특성)

  • 이영엽;정재일;권영호
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.271-281
    • /
    • 2001
  • The characteristics of the heavy metal contamination in the soils affected by the tailings of the Palbong mine have been studied. The soils in the studied area consist mostly of loam by the particle size analysis, but a little of it, located near the stream, consist of loamy sand to sandy loam, finally to loam downward. The organic contents of soils are significantly low aoom 2 percent and the pH is in acidic ranging 6.0 $\pm$ 0.1. The samples of the parent rocks, the normal soils, the tailings and the channel deposits from the studied area were chemically analysed. From the result, the heavy metal concenlration of the soils is a little Jow compared with that of the parent rocks, shows the hydrologic process of the surface and the groundwater. The contamination of the tailings from the ore mining are high in lead, copper and arsenic. In the channel deposits the concenlrations of lead and copper are abnormally high but that of arsenic is uniquely low. And most of heavy metal contamination are decreased with the distance from the mine. It is caused by the properties of the surface and the ground water during the process of the heavy metal migration. The correlation-coefficient between sand and silt contents and the concentrations of Cd, Cu and Pb are significant but the amounts of As and Hg are increased with the clay contents. The dispersion of the heavy metals with the distance shows that the concentrations of them in the soils sampled at distance of 100 m to 200 m along the stream started near the Palbong mine are extremely high compared with those from other distances. These discrepancies are significant in Cd, Cu, Pb and Hg, but low in As. All the samples contain below detection limit of Cr+6 In the present stream water the concentrations of the heavy metals are not detected. So, it is interpreted that the concentrations in the soils are caused by the activities of the mining during the operation and have been continued by the dispersion from the tailings since after the closure of the mining, especially by the surface and ground water. The concentrations are diminished with the distance from the mining site, but in the interval of 800-2000 m increases abruptly. In the soil samples counted on the dispersion direction by wind, the lowering of the concentration is relatively uniform with the distance from the mining site. So, the rapid increase of the heavy metal concentrations is presumed to have been caused by the ground-water movement. In the migration of the heavy metals, the groundwater conditions, such as pH, Eh, the contents of colloidal particles, and Mn and Fe oxides are closely involveo. Integrating with these factors, it is interpreted that the groundwater conditions which have caused the heavy metal contamination of the studied area are those that the pH is about 3 in oxidized conditions, the contents of the colloidal particles are low, and Mn and Fe oxides are not involved in the migration of the heavy metals. Meanwhile, the vegetables growing on the soils in the studied area are not affected by the contamination of the heavy metals.

  • PDF

A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop (철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구)

  • Son, Woohwa;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.59-66
    • /
    • 2012
  • In this study, it was sampling from heavy metal-contaminated soil with the waste in railroad workshop. And, the pollution concentration and analysis of particle-size distribution were conducted to design efficient purification process that it was aimed at high contaminated area, low contaminated area and samples containing waste foundry sand. But, it was the other signs of general soil contamination, as construction waste of waste concrete and waste wood, waste foundry sand, incinerator ash, etc is overall buried on the grounds. Thus, the common heavy metal purification technology has not decreased the pollution. However, heavy-metal contamination was reduced by magnetic separation utilizing the magnetic component of the mixed waste.

Distribution of heavy metal contamination in soils and sediments in the vicinity of the Hwacheon Au-Ag-Pb-Zn mine

  • Lee Sung-Eun;Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.529-531
    • /
    • 2003
  • In order to investigate the level of heavy metal contamination and the seasonal variation of metal concentrations in soils and sediments influenced by past mining activities, tailings, soil and sediment samples were collected from the Hwacheon mine in Korea. The main pollution sources in this mine site are suggested as tailings and mine waste rocks. Elevated levels of Cd, Pb and Zn were found in soils and sediments. In a study of seasonal variation on the heavy metals in soils and sediments, heavy metals were higher enriched collected from before rainy season ($2^{nd}$ sampling) than after rainy season ($1^{st}$ sampling). Also, in order to estimate the microbial effects on Cd speciation in sediments, bacteria which can adsorb Cd was isolated and Cd adsorption characteristics of isolated bacteria in Cd solution was evaluated. The Cd bioremoval efficiency in Cd solution (5 ppm) by bacteria was more than $90\%$. Bioremoval efficiency in single metal solution was higher than that in mixed metal solution of Pb and Zn.

  • PDF