• Title/Summary/Keyword: Metal casting

Search Result 593, Processing Time 0.026 seconds

TECHNICAL RATIONALE FOR METAL FUEL IN FAST REACTORS

  • Chang, Yoon-Il
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.161-170
    • /
    • 2007
  • Metal fuel, which was abandoned in the 1960's in favor of oxide fuel, has since then proven to be a viable fast reactor fuel. Key discoveries allowed high burnup capability and excellent steady-state as well as off-normal performance characteristics. Metal fuel is a key to achieving inherent passive safety characteristics and compact and economic fuel cycle closure based on electrorefining and injection-casting refabrication.

Quantitative Prediction of Gas Evolved by Shell Core in Permanent Mold Casting of Aluminum Alloy (알루미늄합금 중력금형주조용 쉘중자 가스발생량의 정량적 예측)

  • Kim, Ki-Young;Yi, Min-Soo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 1998
  • Shell sand is widely used to make a complex shape castings due to its good collapsibility. When molten metal is poured into the mold, various gases are generated by the thermal decomposition of binder in the shell core. Casting defects such as blow hole and blister come from these gases. If it is possible to predict the evolution of gas quantitatively, it may provide effective solutions for minimizing the casting defects. To examine the gas evolution by shell core quantitatively, casting experiment and calculation were carried out. Gas pressure and gas volume evolved by shell core were measured in the experiment, and temperature distribution in the shell core was obtained by heat transfer analysis. From the result above, prediction on the gas volume evolved during pouring was tried. As forming pressure of the shell core increased and forming temperature decreased, the gas evolution increased. There was a close relationship between the calculated gas volume evolved and the measured one.

  • PDF

A Study on the Filling and Solidification Process During Gravity Casting Using Implicit VOF Method (암시적 VOF법을 이용한 중력주조에서의 충전 및 응고과정에 대한 연구)

  • Im, Ik-Tae;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.102-113
    • /
    • 2000
  • In this study, a three-dimensional gravity casting problem has been examined to investigate a coupled phenomenon of the filling and solidification process. This work simultaneously considers the two key phenomena of metal casting : the fluid flow during mold filling, and solidification process. The VOF method is used to analyze the free surface flow during filling and the equivalent specific heat method is employed to model the latent heat release during solidification. The time-implicit filling algorithm is applied to save the computational time for analyzing the mold filling process. The three-dimensional benchmark problem used in the MCWASP VII has been solved using both the implicit and explicit algorithm, and the present results are compared with the benchmark experimental results and the other numerical results.

A Development of Connection Piece Steel Casting for the Offshore Structures Using High Impact Value with Low Temperature & High Strength Casting Steel Material (고강도 및 저온 고충격 주강소재를 이용한 해양플렌트용 커넥트 주강부품 개발)

  • Kim, Tae-Eon;Park, Sang-Sik;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.151-156
    • /
    • 2010
  • The high-strength low-alloy (HSLA) steels have low carbon contents (0.05~0.25% C) in order to produce adequate formability and weldability, and they have manganese contents up to 1.7%. Small quantities of silicon, chromium, nickel, copper, aluminum, molybdenum are used in various combinations. The results contained in this paper can provide the valuable information on the development of $-40^{\circ}C$ low temperature HSLA. Furthermore, the present experimental data will provide important database for casting steel materials of the offshore structure.

Evaluation of Aluminum Part by Rheo Die Casting (레오다이캐스팅에 의한 알루미늄 부품의 평가)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.99-102
    • /
    • 2004
  • In rheo forming process, slurry making is very important factor because the microstructure of slurry affects the quality of final products. To control the microstructure of slurry, slurry making by new rheo die casting was studied. In new rheocasting method, processes parameters are degree of overheat in molten metal, cooling condition, high frequency induction heating condition and cup temperature. Microstructures according to these parameters were observed. By image analysis, equivalent diameter and roundness of grain were investigated and discussed. To find out mechanical properties of grain controlled aluminum part by rheo die casting, tensile tests were carried out to the T6 heat treatment.

  • PDF

Forensic Engineering Study on the Explosion Accident Investigation of the Centrifugal Casting Machine Using ADINA FSI (ADINA FSI를 활용한 원심주조기 폭발사고 원인 규명에 관한 법공학적 연구)

  • Kim, Eui-Soo;Kim, Jong-Hyuk;Kim, Moo-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.27-33
    • /
    • 2011
  • Forensic Engineering is the area covering the investigation of products, structures that fail to perform or do not function as intended, causing personal injury or damage to property. To investigate explosion accident of the centrifugal casting machine in terms of the forensic engineering, in this paper, the computing simulation using ADINA FSI has performed to investigate that the effect of the Check-Pin fracture by the flow phenomena and molten metal weight and the mechanical properties test of the accident Check-Pin has performed using the instrumented indentation technique. Through these studies, the safety accident that may occur in centrifugal casting machine can be minimized by performing specialized and systematic investigation of the accident cause in terms of the forensic engineering.

Rapid Tooling Technology for Producing Functional Prototypes using Ceramic Shell Investment Casting and Patterns Produced Directly from ThermoJet 3D Printer (ThermoJet 3D 프린터로 직접 제작한 패턴과 세라믹쉘 주조법을 이용한 기능성 시제품의 쾌속제작)

  • Kim Ho-Chan;Lee Seok;Lee Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.203-210
    • /
    • 2006
  • This paper focuses on the development of RT technology suitable for manufacturing a small quantity of metal prototype of a precise part from an RP master. Dimensional accuracy and surface roughness are evaluated from Thermojet part of a 3D printer, and effective post-processing method is introduced. Investment casting is done using a prototype built from 3D printer as a wax pattern. Ceramic shell investment casting technique is developed to build a prototype with materials mostly wanted. Also, experimental result shows this research is very useful in manufacturing of a small quantity of functional part or a test part of a specific material.

Effect of Pressure on Interfacial Heat Transfer Coefficient in the Squeeze Casting Process (용탕단조시 가압력에 따른 계면열전달계수의 변화)

  • Kim, Jin-Soo;Ahn, Jae-Young;Han, Yo-Sub;Lee, Ho-In;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.248-257
    • /
    • 1994
  • Research in heat transfer and solidification commonly involves experimentation and mathematical modeling with associated numerical analysis and computation. Inverse problems in heat transfer are part of this paradigm. During the solidification of metal casting, an interfacial heat transfer resistance exists at the boundary between the casting and the mold, and this heat transfer resistance usually varies with time. In the case of the squeeze casting the contact heat transfer resistance is decreased by pressure and ideal contact is almost accomplished. In the present work, heat transfer coefficient, which is inverse value of the heat transfer resistance, was used for convenience. A numerical technique, Non-Linear Estimation has been adopted for calculation of the casting/mold interfacial heat transfer coefficient during the squeeze casting process. In this method, the measured temperature data from experiment were used. The computational results were applied to the analysis of heat transfer and solidification.

  • PDF