• Title/Summary/Keyword: Metal arsenic

Search Result 322, Processing Time 0.026 seconds

Urinary Arsenic Species Concentrations and Related Factors among Residents Living near Abandoned Metal Mines (폐금속광산 지역 주민들의 요 중 비소종별 농도와 관련요인 평가)

  • Surenbaatar, Ulziikhishig;Seo, Jeong-Wook;Kim, Byoung-Gwon;Lim, Hyoun-Ju;Chang, Jun-Young;Lee, Chul-Woo;Cho, Seong-Sik;Son, Hyun-Jin;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.655-666
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate urinary arsenic concentrations by arsenic species and to identify related factors among local residents near abandoned metal mines in Korea. Methods: Among the subjects of the Health Survey of Residents Near Abandoned Metal Mines for 2013-2017, 664 people were enrolled in this study. Urinary arsenic species analysis was performed using ICP/MS. Result: The geometric means (95% Confidence Interval) by urinary arsenic species were 0.15 (0.13-0.17) ㎍/L for AsIII, 0.64 (0.55-0.75) ㎍/L for AsV, and 1.21 (1.05-1.40) ㎍/L for inorganic arsenic. The geometric means of urinary MMA and DMA were 1.58 (1.35-1.86) ㎍/L and 77.93 (72.61-83.63) ㎍/L, respectively, and that of organic arsenic was 83.15 (77.80-88.88) ㎍/L. The concentration of inorganic arsenic in the group using groundwater as drinking water was 1.36 (1.13-1.64) ㎍/L, which was statistically significantly higher than the 1.00 (0.80-1.25) ㎍/L in the other drinking water groups. Regarding rice consumption, the concentration of inorganic arsenic in urine in the group whose consumption was more than half rice produced in the residential area was 1.32 ㎍/L, which was statistically significantly higher than that of the 1.12 ㎍/L for the group whose consumption was less than half. Conclusion: In the analysis of the factors affecting the urinary inorganic arsenic concentration of the residents of the abandoned metal mine area, the use of groundwater as drinking water and consumption of rice produced in the residential area were considered related factors.

Environmental Source of Arsenic Exposure

  • Chung, Jin-Yong;Yu, Seung-Do;Hong, Young-Seoub
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.5
    • /
    • pp.253-257
    • /
    • 2014
  • Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

Various Metal Oxide Additions Based on TiO2 and Adsorption Characteristics of Hollow Fiber Adsorbent on Arsenic (TiO2 기반의 다양한 금속산화물 첨가와 중공사형 흡착제의 비소 흡착 특성)

  • Eom, Hanki;Jang, Younghee;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.345-351
    • /
    • 2019
  • In this study, the hollow fibers from $TiO_2$ and various metal oxides additives were fabricated and characterized in order to remove the arsenic substance from a contaminated water. Experimental results showed the best arsenic adsorption performance from pristine $TiO_2$ hollow fibers. When metal oxides were added, the metal oxides reduced the acid sites on the surface of $TiO_2$ and the arsenic adsorption performance decreased. However, the long term arsenic adsorption performance was enhanced and showed better performance than that of using pristine $TiO_2$ hollow fibers when $Al_2O_3$ was added during the hollow fiber fabrication. In addition, the arsenic adsorption performance showed a high dependency on the specific surface area of hollow fibers. It was confirmed that the abundancy of Lewis and Bronsted acid sites provided was favorable for the arsenic adsorption. It was also demonstrated that commercially available $TiO_2$ powders can be an attractive candidate material for manufacturing hollow fibers for a small scale water treatment plant.

Health Effects of Chronic Arsenic Exposure

  • Hong, Young-Seoub;Song, Ki-Hoon;Chung, Jin-Yong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.5
    • /
    • pp.245-252
    • /
    • 2014
  • Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments.

The separation of arsenic metabolites in urine by high performance liquid chromatography-inductively coupled plasma-mass spectrometry

  • Chung, Jin-Yong;Lim, Hyoun-Ju;Kim, Young-Jin;Song, Ki-Hoon;Kim, Byoung-Gwon;Hong, Young-Seoub
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.18.1-18.9
    • /
    • 2014
  • Objectives The purpose of this study was to determine a separation method for each arsenic metabolite in urine by using a high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometer (ICP-MS). Methods Separation of the arsenic metabolites was conducted in urine by using a polymeric anion-exchange (Hamilton PRP X-100, $4.6mm{\times}150mm$, $5{\mu}m$) column on Agilent Technologies 1260 Infinity LC system coupled to Agilent Technologies 7700 series ICP/MS equipment using argon as the plasma gas. Results All five important arsenic metabolites in urine were separated within 16 minutes in the order of arsenobetaine, arsenite, dimethylarsinate, monomethylarsonate and arsenate with detection limits ranging from 0.15 to $0.27{\mu}g/L$ ($40{\mu}L$ injection). We used G-EQUAS No. 52, the German external quality assessment scheme and standard reference material 2669, National Institute of Standard and Technology, to validate our analyses. Conclusions The method for separation of arsenic metabolites in urine was established by using HPLC-ICP-MS. This method contributes to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies for arsenic exposure in South Korea.

Removal Characteristics of Arsenic from Abandoned Metal Mining Tailings by Electrokinetic Technique (동전기법에 의한 폐 중금속광산 퇴적토 내의 비소제거 특성)

  • Shin Hyun-Moo;Yoon Sam-Seok
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • Electrokinetic technique was considered in removing arsenic from the abandoned mining tails. In order to estimate the removal characteristics of arsenic, the sequential extraction analysis and desorption experiment were carried out prior to the application of electrokientic process. The result of sequential extraction analysis indicated that the water soluble and exchangeable fraction, easily leachable to ground water, were very low as much as about 2.5% and the fraction except residual (38.3%), possibly extractable under very acidic or alkalic environment, was about 59%. In the result of desorption test using four different kinds of electrolytes, the mixture of citric acid and sodium dodecyl sulfate (SDS) showed the highest desorption efficiency as much as 77.3%. The removal efficiencies of arsenic from mining tailings by electrokinetic process under the different electrolyte environments were slightly low and resulted in the following order: citric acid + SDS (18.6%) > 0.1 $NHNO_3$ (8.1%) > HAc (7.4%) > Distilled water(6.6%). Also, arsenic in soil matrix was moved favorably in the direction of anodic rather than cathodic region, which is opposite trend with cationic metal ions generally existing in soil, because anionic form of arsenic is dominated in acidic soil caused by the movement of acid front form anode.

Microstructural Analysis of the Solidified Arsenic-containing Heavy Metal Sludge (비소를 함유한 중금속슬러지 고화체의 미세구조적 분석)

  • Kim, Yeong-Kwan;Jeong, Myoung-Sun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.169-174
    • /
    • 1996
  • Microstructural analyses of synthetic arsenic-containing heavy metal sludges solidified with Portland cement were performed. Heavy metal sludges containing 0.04M of cadmium, chromium, copper, lead, and arsenic were prepared by sodium hydroxide precipitation and successive vacuum filtration. The sludges mixed with cement were cured for 14 days. The solidified sample was characterized by 1) leaching test, 2) scanning electron microscopy and 3) X-ray diffractometry. Of the metals tested, only Pb concentration in the leachate exceeded the Korean regulatory limit. The level of lead in the leachate was as high as 10 times the regulatory limit. X-ray analysis suggested that the metal hydroxides might be present in complex or impure crystalline phases.

  • PDF

Application of a Soil Separation System for the Remediation of Arsenic Contaminated Soil in a Metal Mining Area (폐금속광산 지역의 비소오염토양 처리를 위한 선별 기술 적용)

  • ParK, Chan-Oh;Kim, Jong-Won;Park, Jun-Hyoung;Lee, Young-Jae;Yang, In-Jae;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.56-64
    • /
    • 2013
  • After the law has been enacted for the prevention and recovery of mining damage in 2005, efforts of remediation have been started to recover heavy metal contaminated soils in agricultural land near mining sites. As part of an effort, the upper part of cultivation layer has been treated through covering up with clean soil, but the heavy metal contamination could be still spreaded to the surrounding areas because heavy metals may be remained in the lower part of cultivation layers. In this study, the most frequently occurring arsenic (As) contamination was selected to study in agricultural land nearby an abandoned metal mining site. We applied separation technologies considering the differences in the physical characteristics of soil particles (particle size, density, magnetic properties, hydrophobicity, etc.). Based on physical and chemical properties of arsenic (As) containing particles in agricultural lands nearby mining sites, we applied sieve separation, specific gravity separation, magnetic separation, and flotation separation to remove arsenic (As)-containing particles in the contaminated soil. Results of this study show that the removal efficiency of arsenic (As) were higher in the order of the magnetic separation, flotation separation, specific gravity separation and sieve separation.

Arsenic Poisoning (비소 중독)

  • Kim Yang Ho;Lee Ji Ho;Sim Chang Sun;Jeong Kyoung Sook
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.2 no.2
    • /
    • pp.67-71
    • /
    • 2004
  • Arsenic poisoning has three types of poisoning. First, acute arsenic poisoning is usually caused by oral intake of large amount of arsenic compound with purpose of homicide or suicide. Second, chronic arsenic poisoning is caused by inhalation of arsenic in the occupational setting or by long-term oral intake of arsenic-contaminated well water. Third, arsine poisoning occurs acutely when impurities of arsenic in non-ferrous metal react with acid. Clinical manifestation of acute arsenic poisoning is mainly gastrointestinal symptoms and cardiovascular collapse. Those of chronic poisoning are skin disorder and cancer. Arsine poisoning shows massive intravascular hemolysis and hemoglobinuria with acute renal failure. Exposure evaluation is done by analysis of arsenic in urine, blood, hair and nail. Species analysis of arsenic is very important to evaluate inorganic arsenic acid and mono methyl arsenic acid (MMA) separated from dimethyl arsenic acid (DMA) and trimethyl arsenic acid (TMA) which originate from sea weed and sea food. Treatment with dimercaprol (BAL) is effective in acute arsenic poisoning only.

  • PDF

Comparison of Heavy Metal Contents in Eyeliner Products -Focused on Domestic and Foreign Cosmetic Brands-

  • Lee, Kee-Young;Kim, Jeong-hee
    • Journal of Fashion Business
    • /
    • v.19 no.3
    • /
    • pp.113-120
    • /
    • 2015
  • Heavy metal ingredients of eyeliner product could cause side effect ranging from simple irritation, keratitis, corneal epithelium inflammation, eyelid dermatitis and dry eye symptoms have been reported. This study was conducted in order to prepare fundamental data for acceptable quality level heavy metal ingredients in the domestic and foreign cosmetic brand eyeliner products and to assess theirs the heavy metal concentrations. We measured the concentration of 5 heavy metals in 10 eyeliner products using ICP/MS-LC. According to the results, the average metal concentrations were as follows.; In case of domestic eyeliner products, 289.4 ppm for aluminium(Al), 304 ppm for manganese(Mn), 44 ppm for nickel(Ni), 0.58 ppm for arsenic(As) and 0.35 ppm for lead(Pb). In case of Foreign eyeliner products, 11337.8 ppm for aluminium(Al), 1678.8 ppm for manganese(Mn), 74.2 ppm for nickel(Ni), 1 ppm for arsenic(As) and 0.8 ppm for lead(Pb). Foreign products contained higher amounts of the two elements(Pb, As) compared to domestic ones. Also, greater concentrations of arsenic(As) were detected from waterproof products than non-waterproof ones. In conclusion, for safety reasons we suggested the amounts of heavy metals from the domestic and foreign eyeliner products. This finding will be helpful to provide the fundamental data which is standard of toxicological heavy metals acceptable on eyeliner products.