• Title/Summary/Keyword: Metal alloy

Search Result 1,896, Processing Time 0.031 seconds

High-temperature interaction of oxygen-preloaded Zr1Nb alloy with nitrogen

  • Steinbruck, Martin;Prestel, Stefen;Gerhards, Uta
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • Potential air ingress scenarios during accidents in nuclear reactors or spent fuel pools have raised the question of the influence of air, especially of nitrogen, on the oxidation of zirconium alloys, which are used as fuel cladding tubes and other structure materials. In this context, the reaction of zirconium with nitrogen-containing atmospheres and the formation of zirconium nitride play an important role in understanding the oxidation mechanism. This article presents the results of analysis of the interaction of the oxygen-preloaded niobium-bearing alloy $M5^{(R)}$ with nitrogen over a wide range of temperatures ($800-1400^{\circ}C$) and oxygen contents in the metal alloy (1-7 wt.%). A strongly increasing nitriding rate with rising oxygen content in the metal was found. The highest reaction rates were measured for the saturated ${\alpha}-Zr(O)$, as it exists at the metal-oxide interface, at $1300^{\circ}C$. The temperature maximum of the reaction rate was approximately 100 K higher than for Zircaloy-4, already investigated in a previous study. The article presents results of thermogravimetric experiments as well as posttest examinations by optical microscopy, scanning electron microscopy (SEM), and microprobe elemental analyses. Furthermore, a comparison with results obtained with Zircaloy-4 will be made.

The Effects of Fluorine Passivation on $SF_6$ Treatment for Anti-corrosion after Al(Cu 1%) Plasma Etching (Al(Cu 1%)막의 플라즈마 식각후 부식 억제를 위한 $SF_6$ 처리시 fluorine passivation 효과)

  • 김창일;권광호;백규하;윤용선;김상기;남기수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.203-207
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, the $SF_6$ plasma treatment subsequent to the etch has been carried out. A passivation layer is formed by fluorine-related compounds on etched Al-Cu alloy surface after $SF_6$ treatment, and the layer suppresses effectively the corrosion on the surface as the RF power of $SF_6$ treatment increases. The corrosion could be suppressed successfully with $SF_6$ treatment in the RF power of 150watts.

  • PDF

Control of Grain Size on Friction Stir Welded AZ31 and AZ91 (AZ31과 AZ91의 마찰교반용접부 결정립 크기 제어)

  • Gwon, Gi-Su;Lee, Chang-U;Kim, Mok-Sun;Sato, Yutaka S.;Kim, Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.328-331
    • /
    • 2007
  • It was carried out to evaluate microstructure and mechanical properties of friction stir welded(FSW) on magnesium alloys. Two types magnesium alloy was used in this work, AZ31 wrought and AZ91 cast magnesium alloy. Microstructure near the weld zone showed general weld structures such as stir zone(SZ), thermo-mechanically affected zone(TMAZ) and heat affected zone(HAZ). In the AZ91 alloy, the SZ had a fine grain size and $\beta$ phase particles which were well distributed in matrix. It was characterized to redistribute by partial or full re-solution of the $\beta$ phase which is coarse in base metal during FSW processing. The hardness of the SZ slightly increase than the base metal in AZ31 Mg alloy.

  • PDF

Fabrication and Properties of Alloy Foam Materials using Metal Powders (금속 분말을 이용한 합금폼 제조 및 특성)

  • Choi, James;Kim, Ku-Hwan
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position (Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구)

  • Son, S.C.;Park, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

A Study on the Pd-Ni Alloy Hydrogen Membrane using the Porous Nickel Metal Support (다공성 Ni 금속 지지체를 사용한 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Um Ki-Youn;Kim Sang-Ho;Park Jong-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.289-295
    • /
    • 2004
  • A dense palladium-nikel (Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support mixed with submicron/micron nickel powder instead of mesoporous stainless steel support. Plasma treatment process is introduced as pre-treatment process instead of HCI activation. Pd-Ni alloy composite membrane prepared by electro plating was fairly a uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature 773 K and pressure 2.2 psi. The results showed that hydrogen ($H_2$) permeance was 27 ml/$\textrm{cm}^2$ㆍatmㆍmin and hydrogen/ nitrogen ($_H2$$N_2$) selectivity was 8 at 773 K.

Recycling of Aluminum Alloy from Al-Cu Metal Matrix Composite Reinforced with SiC Particulates

  • Sharma, Ashutosh;Ahn, Byungmin
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.691-695
    • /
    • 2018
  • In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.

Evaluation of mechanical Characteristic according to the Filler Metal by GTA welding Process using 7075 Aluminum Alloy (알루미늄 합금 7075의 용가재에 따른 GTA용접공정의 기계적 특성 평가)

  • Son, Yeong-San;Lim, Byung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.521-526
    • /
    • 2017
  • In the GTA welding process of Al 7075 alloy using different types of filler metals, the tensile test and micro-hardness test were conducted to evaluate the mechanical characteristics. Also, the radiographic test result showed that the weld met the criterion of level 1 in accordance with KS D 0242 for verifying the welding integrity and there were no welding defects. The tensile test result obtained using Al 7075 as a filler metal showed that the material was fractured in the weld zone. The tensile strengths of the materials using Al 7075 and ER 4043 as the filler metal were about 240MPa and 253MPa, their yield strengths were about 132MPa and 120MPa and their elongation percentages were 6.6% and 13%, respectively. The micro-hardness value of the deposited metal zone when using Al 7075 as the filler metal was Hv 132. However, the micro-hardness of the material using ER4043 as the filler metal was about 24% lower than that using Al 7075. When the chemical composition of the filler metal is the same as that of the material itself, fracture can occur in the deposited metal zone. Therefore, it is not desirable to use the same material as the filler metal for the welding of Al 7075 alloy. Moreover, the use of Al-Si based ER 4043 as a filler metal is more desirable than using the same material as a filler metal for welding Al 7075.

AN EXPERIMENTAL STUDY ON THE PORCELAIN POROCITY EXERTED BY THE CONTAMINATION OF THE CERAMO-METAL ALLOY AND LIQUID (도재소부전장금관용 합금과 용액의 오염이 기포발생에 미치는 영향에 관한 실험적 연구)

  • Jeun, Young-Chan;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.20 no.1
    • /
    • pp.33-49
    • /
    • 1982
  • This study was undertaken to observe the porcelain porosity exerted by the contamination of the alloy and liquid. The alloy used in this study was Jelstar; liquids were Ceramco Sta-Wet liquid, distilled water and tap water; and Ceramco vacuum porcelain powder was used. The measurements with photomicroscope (x200, Olympus) were made on the porosity, the diameter (mm) of the pores and the numbers of the pores ($No/mm^2$) The results of this study were obtained as follows: 1. In the porosity, the opaque layer contained over 70% of the total porosity, and the porosity was increased about twice in every porcelain layer by the tap water. 2. The contamination of the alloy and liquid caused porosity to increase markedly at the interface of the metal-porcelain. 3. The diameter of the pores were increased about 1.5 times larger by the contaimination of the liquid, and only a slight increase in the opaque layer due to the contamination of the alloy. 4. In the numbers of the pores, there were significant differences according to the contamination of the alloy and the porcelain layer. And the contamination of the liquid caused significant differences only in the opaque layer.

  • PDF

The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test (計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF