• Title/Summary/Keyword: Metal Recovery

Search Result 547, Processing Time 0.034 seconds

Critical Factors to High Thermostability of an ${\alpha}$-Amylase from Hyperthermophilic Archaeon Thermococcus onnurineus NA1

  • Lim, Jae-Kyu;Lee, Hyun-Sook;Kim, Yun-Jae;Bae, Seung-Seob;Jeon, Jeong-Ho;Kang, Sung-Gyun;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1242-1248
    • /
    • 2007
  • Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to ${\alpha}$-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the ${\alpha}$-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at $80^{\circ}C$ and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life ($t_{1/2}$) values of 10 min at $90^{\circ}C$, despite the high similarity to ${\alpha}$-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermo stability. The presence of $Ca^{2+}$ seemed to be critical, significantly changing $t_{1/2}$ at $90^{\circ}C$ to 153 min by the addition of 0.5 mM $Ca^{2+}$. On the other hand, the thermostability was not enhanced by the addition of $Zn^{2+}$ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermo stability, indicating that the residues involved in metal binding is very critical for the thermostability.

An Experimental Study of Seismic Retrofit on the Viaduct Bridge of Rail Transit (철도 고가교 기둥의 내진성능에 관한 실험적 연구)

  • Kim, Jinho;Shin, Hongyoung;Park, Yeonjun;Hur, Jinho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.616-622
    • /
    • 2012
  • Earthquake damage of viaduct bridge of railroad may give rise to social loss due to transport restrictions greater than cost of structural recovery. Therefore, viaduct bridge of railroad should have ensure adequate seismic performance. But, results of seismic performance evaluation, many of seismic retrofit was required. In this study, five scale models of columns were made and four of them were reinforced by HT-A(HyperTex & perforate Aluminum) which is improved than existing method. Testing the columns by constant axial load and cyclic lateral displacements, seismic performance of columns has been verified from the result of evaluating the stiffness, ductility and energy dissipation capacity.

A Study on the Separation of Cerium from Rare Earth Precipitates Recovered from Waste NiMH Battery (폐니켈수소전지에서 회수된 희토류복합 침전분말로부터 세륨 회수에 대한 연구)

  • Kim, Boram;Ahn, Nak-Kyoon;Lee, Sang-Woo;Kim, Dae-Weon
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.18-25
    • /
    • 2019
  • In order to recover the cerium contained in the spent nickel metal hydride batteries (NiMH battery), the recovered rare earth complex precipitates from NIMH were converted into rare earth hydroxides through ion exchange reaction to react with NaOH aqueous solution at a reaction temperature of 70 ℃, for 4 hours. Rare earth hydroxides were oxidized by injecting air at 80 ℃ for 4 hours to oxidize Ce3+ to Ce4+. The oxidation rate of cerium was confirmed to be about 25 % through XPS, and the oxidized powder was separated from the rest of the rare earth using the difference in solubility in dilute sulfuric acid. The finally recovered powder has a crystal phase of cerium hydroxide (Ce(OH)4). The cerium purity of the final product was about 94.6 %, and the recovery rate was 97.3 %.

MoS2 layer etching using CF4 plasma and H2S plasma treatment

  • Yang, Gyeong-Chae;Park, Seong-U;Kim, Gyeong-Nam;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.222.2-222.2
    • /
    • 2016
  • 트랜지스터 응용 등에 관한 연구가 활발해 지면서 에너지 밴드갭이 0 eV에 가까운 그래핀 이외의 밴드 갭 조절이 가능한 MoS2 (molybdenum disulfide), BN (boron nitride), Bi2Te3 (bismuth telluride), WS2 (tungsten disulfide) 등과 같은 이차원 Transition Metal DiChalcogenides (TMDC) 물질이 반도체 물질로 각광받고 있다. 특히 MoS2의 경우 단결정 덩어리 상태에서는 약 1.3 eV의 밴드갭을 가지나 두께가 줄어들어 두 층일 경우에는 약 1.65 eV, 단일층이 되면 약 1.9 eV의 밴드갭을 가져 박막 층수에 따라 에너지 밴드갭 조절이 가능한 것으로 알려져있다. 하지만 두께 조절이 가능하면서 대면적, 고품질을 가지는 MoS2 박막 합성은 아직 제한적이라 할 수 있으며 새로운 방법 및 물질에 대한 연구가 지속적으로 이루어 지고 있다. 따라서 본 연구에서는 다양한 층수를 지니는 MoS2 합성을 위해 나노 두께의 MoS2 박막을 CF4 plasma 를 이용하여 layer etching 진행하고 CF4 plasma 100초 etching 진행한 2 layer 두께의 MoS2를 기준으로 H2S plasma를 이용하여 treatment 진행하였다. 물리적, 화학적 분석은 Raman spectroscopy, XPS(X-ray Photoelectron Spectroscopy), AFM (Atomic Force Microscopy) 등을 이용해 진행하였고 이를 통해 MoS2 layer 감소 및 damage recovery 등을 확인하였다.

  • PDF

Separation of Nickel and Tin from copper alloy dross (구리 합금 부산물에서의 주석과 니켈의 분리)

  • Lee, Jung-Il;Hong, Chang Woo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.224-228
    • /
    • 2014
  • Recently, the demands for separation/recovery of valuable metals such as nickel or tin from copper based alloys has been attracting much attention from the viewpoints of environmental protection and resource utilization. In this report, experimental results on concentration increasement of nickel and tin compared to the previous report are investigated. Ni is successfully separated by a organic solvent and reduced to the metal powder whose concentration is over 98 %. Sn is separated by a selective solution method and its concentration is increased to 97.5 % by three consecutive solution and reduction process. Crystal structure, surface morphology and microstructure of the separated samples are studied.

Hydrogen Storage Characteristics Using Redox of $M/Fe_2O_3$ (M = Rh, Ce and Zr) Mixed Oxides ($M/Fe_2O_3$ (M = Rh, Ce 및 Zr) 혼합 산화물의 산화-환원을 이용한 수소 저장 특성)

  • Ryu, Jae-Chun;Lee, Dong-Hee;Kim, Young-Ho;Yang, Hyun-Soo;Park, Chu-Sik;Wang, Gab-Jin;Kim, Jong-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • [ $M/Fe_2O_3$ ] (M=Rh, Ce and Zr) mixed oxides were prepared using urea method to develop a medium for chemical hydrogen storage by their redox cycles. And their redox behaviors by repeated cycles were studied using temperature programmed reaction(TPR) technique. Additives such as Rh, Ce and Zr were added to iron oxides in order to lower the reaction temperature for reduction by hydrogen and re-oxidation by water-splitting. From the results, concentration of urea used as a precipitant had little effect on particle size and reduction property of iron oxide. TPR patterns of iron oxide consisted of two reduction peaks due to the course of $Fe_2O_3\;{\rightarrow}\;Fe_3O_4\;{\rightarrow}\;Fe$. The results of repeated redox tests showed that Rh added to iron oxide have an effect on lowering the re-oxidation temperature by water-splitting. Meanwhile, Ce and Zr additives played an important role in prevention of deactivation by repeated cycles. Finally, Fe-oxide(Rh, Ce, Zr) sample added with Rh, Ce and Zr showed the lowest re-oxidation temperature by water-splitting and maintained high $H_2$ recovery in spite of the repeated redox cycles. Consequently, it is expected that Fe-oxide(Rh, Ce, Zr) sample can be a feasible medium for chemical hydrogen storage using redox cycle of iron oxide.

A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho S.H.;Youn S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

Studies on the Production of Gluconic Acid by Resting Cell System of Aspergillus niger (Aspergillus niger의 휴지균체에 의한 Gluconic Acid생성에 관한 연구)

  • 정지관;양호석;신규철;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.7-19
    • /
    • 1981
  • The production of gluconic acid from glucose by the resting cell system of Aspergillus niger was studied. It was found that the conversion products from glucose by the resting cell system were markedly influenced by the pH, temperature, substrate concentration, aeration, metal ions, cultivation time and storage conditions of the resting cells. Conversion products were identified as gluconic acid by the thin layer chromatography and infrared spectrophotometry. These conversions were greatly stimulated by addition of $Mg^{++}$, and S $n^{++}$, but showed inhibitory effects by C $u^{++}$, H $g^{++}$, C $d^{++}$, A $g^{+}$ and cyanide. For the optimum cell storage, it was effective to be kept at -$25^{\circ}C$ in 0.05M phosphate buffer solution of pH 7.0. The gluconic acid production by the resting cell system was more effective than those of the fermentation with respect to cultivation time, yield, recovery and re-use of the cell.l.l.l.l.l.l.

  • PDF

Effects of Salicylate on the Activity of Isoperoxidase $A_3$ from Tobacco Callus (Salicylate가 담배 미분화세포 isoperoxidase $A_3$의 활성에 미치는 영향)

  • 이미영
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • Salicylate is involved in the induction of pathogen-related proteins and plant defense response. The effects of salicylate on the activity isoperoxidase $A_3$ from tobacco callus (Nicotiana tabacum L.) and the protection against the enzyme inactivation by salicylate in the presence of $Fe^{2+}$ were examined. About 20% and 85% activity losses of peroxidase occurred at 0.48 mM and 0.6 mM salicylate, respectively, showing that isoperoxidase $A_3$ was inactivated by salicylate. The inactivation occurred depending on pH and showed noncompetitive inhibition mode. Moreover, inactivation of the enzyme by salicylate was completely protected in the presence of $Fe^{2+}$. Apoperoxidase without heme moiety was constructed and the effects of various metal ions on the recovery of enzyme activities were investigated. More than 80% of the activity was reconstituted by the addition of $Fe^{2+}$ or hemin. However, the enzyme activity was not recovered by $Cu^{2+},\;Zn^{2+},\;Co^{2+},\;or\;Mn^{2+}$.

  • PDF

A Study on the Recycling of Molten Ladle Slag Residue into LF Process (Ladle내 잔류(殘留) 용융(熔融)슬래그의 LF 공정(工程)으로 재활용(再活用)에 관한 연구(硏究))

  • Kim, Young-Hwan;Yoo, Jung-Min;Kim, Dong-Sik;Lim, Jong-Hoon;Yang, Sung-Ho
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • LF slag is formed by EAF carryover slag and slag former(such as lime, dolomite) put into the ladle during the tapping molten metal. After LF process, continuous casting is started when molten steel is sent from ladle to tundish through bottom nozzle of ladle. Conventionally, remained molten slag and steel in ladle are poured into a slag port and they are transferred to a slag yard and then recycled. In this study, we investigated about recycling of molten LF slag residue(including Fe residue to reuse) which is made in steelmaking process. As a result, lime usage was decreased about 2.2~3.2 kg/steel-ton and also molten steel yield rate was increased about 0.3 ~ 0.5 percent point.