• Title/Summary/Keyword: Metal Powder Combustion

Search Result 57, Processing Time 0.026 seconds

Primary Research on Theoretical Performance and Powder Supply Characteristics of Powder Rocket

  • Deng, Zhe;Hu, Chun-bo;Hu, Song-qi;Xu, Yi-hua
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-5
    • /
    • 2015
  • The powder propellant rocket which uses micron-sized particles as fuel is storable and costly. Functions like thrust control and multiple-ignition can be realized by changing powder mass flow rate. In this paper, we discuss the theoretical performance of bi-propellant and mono-propellant powder rocket. When used as the fluidization gas, helium can improve specific impulse dramatically. The stability of the powder feeding device is preliminarily quantified through metal/N2O powder rocket hot fire tests.

A Study on the Comparison of Chloride Ion Quantification Methods for Magnesium-Aluminum (Mg-Al) Alloy Powder (마그네슘-알루미늄(Mg-Al) 합금 분말의 염소이온 정량법의 비교에 관한 연구)

  • Yunhwan, Kim;Youngson Choe
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.450-454
    • /
    • 2023
  • Chloride ions in the alloy powder used as flux in Flux Cored Arc Welding (FCAW) can cause pores on the bead surface of the welding metal to cause defects, or chloride remaining in the alloy powder can cause corrosion of the metal. Combustion-ion chromatography is mainly used to quantify the chloride ions in alloy powder, but there is a limitation in that the equipment is expensive and requires a high degree of expertise. Therefore, this study aims to find an easy and accurate quantification method in the field by comparing combustion-ion chromatography (C-IC), which is mainly used for chloride ion quantification of alloy powder, X-ray fluorescence analysis (XRF), and potentiometric titration. In this article, magnesium-aluminum alloy powder is applied to the quantification of chloride ions because it is most commonly used as flux. This study confirmed that potentiometric titration can be applied to the quantification of chloride ions in the alloy powder in the industry field.

Conceptual Design of the Slag Removal Method in the Metal Powder Combustor and Condition Tests for the Water Film Formation (금속분말 연소기의 slag 제거기법 개념 설계 및 Water Film 형성 조건 기초실험)

  • Kim, Kwang-Yeon;Shmelev, V.;Ko, Hyun;Lee, Sung-Woong;Cho, Yong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.554-557
    • /
    • 2011
  • One of the issues that occurs in development of a combustor using Metal Powder as a fuel is an alumina slag processing. A water film formed inside the combustor is expected to be able to solve this issue. The experiments about the formation of a water film were carried out as a preliminary study. As the tangential velocity of water jet is increasing, the angle derivation from horizontal is decreasing for the test model. Results of the experiments showed that the thin water film on the inner surface appeared at the velocity of 10~15 m/s.

  • PDF

Finite Element Analysis of Combustion Reaction on Iron and Metal Oxides Interface (Fe-금속 산화물 계면에서 연소반응의 유한 요소해석)

  • Gu, Mun-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.118.2-118.2
    • /
    • 2017
  • Combustion behavior of Fe, CuO, NiO, ZnO and $Fe_2O_3$ powder mixture was carried out by finite element method (FEM) to understand a reaction at iron and metal oxide interface. The FEM was done by using ANSYS Fluent 17.0. Initial and boundary conditions are 1 atmosphere, room temperature, 0.1MPa of oxygen partial pressure, $T_{S1}=1127^{\circ}C$, $T_{S2}=327^{\circ}C$ for a cylindrical shape specimen with dia. $35{\times}80$ [mm]. The maximum combustion temperature is $1537^{\circ}C$ for the condition of conduction, convection and radiation. The combustion temperature and rate are about $847^{\circ}C$ and 3.9mm/sec, respectively. The combustion wave is enough to make ternary ferrite phase like $CuNiZnFe_2O_3$.

  • PDF

Experimental Study on the Combustion Characteristics of Magnesium using Infrared Thermography and FE-SEM (적외선 열화상법 및 FE-SEM을 활용한 마그네슘 연소특성에 관한 실험적 연구)

  • Lee, Jun-Sik;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.927-934
    • /
    • 2020
  • Magnesium powder has been widely used in various industries because it is light weight and extremely high mechanical strength including aeronautics and chemicals. However, magnesium, as a combustible metal, poses serious safety issues such as fires and explosions if it is not managed properly. Especially, magnesium's max adiabatic flame temperature is 3,340℃ and it is impossible to extinguish it by using water, CO2 and Halonagents. The aim of this study is to identify the combustion characteristics of magnesium powder. We carried out a combustion experiment, using 1 kg of magnesium (purity > 99 %, particle < 150 ㎛). The features of the magnesium burning process were scrutinized using infrared thermal image analysis. Also, a field-emission scanning electron microscope (FE-SEM) were used employed to analyze particulate composites and properties. It concludes the significant tendency of magnesium fire and light, combustion carbide's particle characteristics. This study contributes to make better prevention and response manners to magnesium fires, as well as fire investigation measures.

Characteristics of Fuel-rich Solid Propellants with Boron Powder and the Combustion Products (Boron Powder 적용 연료과농 추진제 및 연소 후 생성물의 특성 연구)

  • Kim, Miri;Kim, Jeongeun;Khil, Taeock
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • The propellants used in the gas generator of the ducted rocket are fuel-rich propellants, which contain an excessive amount of metal fuel and a small amount of oxidizing agent compared to general solid rocket propellants. In this paper, boron powder and MgAl(Magnesium-Aluminium alloy) were applied to produce fuel-rich propellants. The optimum formulation was determined by characterizing these metal fuel-rich propellants. Analysis of combustion products in the gas generators confirmed that the fuel-rich propellants containing fine boron powder itself instead of boron-bead could be useful in gas generators.

Combustion Synthesis of $LiMn_2$$O_4$with Citric Acid and the Effect of Post-heat Treatment

  • Han, Yi-Sup;Son, Jong-Tea;Kim, Ho-Gi;Jung, Hun-Teak
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.307-307
    • /
    • 2001
  • Combustion process with citrate was used to produce the LiMn$_2$O$_4$powder. Precursors are pre-ignited in open air followed by post-heating in the range from $600^{\circ}C$ to 80$0^{\circ}C$ for 4h. With varying the molar ratio (R) of ethylene glycol (EG) to citric acid (CA) from 0 to 4, the effect of EG content on powder characteristics is evaluated. Vacuum drying promote the auto-ignition at room temperature. With small addition of EG metal ion was selectively segregated with organic substances and undesired lithium evaporation occurred during post-heating. LiMn$_2$O$_4$phase which is produced by combustion reaction was decomposed back to Mn$_3$O$_4$because the reaction temperature was higher than 95$0^{\circ}C$. With increasing EG content, the homogeneity of LiMn$_2$O$_4$powder increased and specific surface area increased. And lithium evaporation during vacuum drying and/or ignition also increased.

  • PDF

Concept Design of Hydro Reactive Solid Propellant for Underwater High Speed Ramjet Engine System (수(水)반응성 고체추진제를 이용한 수중고속램제트엔진 시스템 개념 설계)

  • Chae Jae-Ou;Sim Ju-Hyen;Kwak Yong-Whan;Koo Hyung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.121-131
    • /
    • 2005
  • For thrust motion of high speed underwater torpedo the special hydro reactive fuels that burns in vapor water and water supply from aboard is used. The main component of this hydro reactive fuel is the powder of active metal (Mg, Al) that can burn in water vapor with large heat generation in the rocket combustion chamber. The thermodynamic analysis of combustion properties of the burning of the particles of these active metal in the vapor water have been carried out. The conception for the possible content variants of the hydro reactive fuels have been discussed using the geometrical and thermodynamic combustion conditions with the basic recommendation for contents of designed hydro reactive fuels in future.

  • PDF

Preparation of NiO/YSZ Ultra-Fine Powder Composites Using Self-Sustaining Combustion Process (Self-Sustaining Combustion Process를 이용한 NiO/YSZ 초미세 복합분말 제조)

  • 김선재;정충환;김경호;김영석;국일현
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.411-417
    • /
    • 1996
  • Ultrafine NiO/YSZ (Yttria Stabilized Zirconia) powders were made by using a glycine nitrate process which is used as anode material for solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal nitrates occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized powders were examined with X-ray diffraction(XRD) Brunauer Emmett Teller with N2 absorption. scanning electron microscopy (SEM). and transmission electron microscopy (TEM). Ultrafine NiO/YSZ powders of 15-18 m2/g were obtained through GNP when the content of glycine was controlled to 1 or 2 times the stoichiometric ratio in the precursor solutions. Strongly acid precursor solution increased the specific surface area of the synthesized powders. This is suggested to be the increased binding of metal nitrates and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of {{{{ { NH}`_{3 } ^{+ } }}. After sintering and reducing treatment of NiO/YSZ powders synthesized by GNP the Ni/YSZ pellet showed ideal microstructure where very fine Ni particles of 3-5 ${\mu}{\textrm}{m}$ were distributed uniformly and fine pore around Ni metal particles was formed. leading to anincrease of the triple phase boundary among gas Ni and YSZ.

  • PDF