• Title/Summary/Keyword: Metal Pollution

Search Result 757, Processing Time 0.034 seconds

Spatial variability of heavy metal contamination of urban roadside sediments collected from gully pots in Seoul City (서울시 우수관에서 채취한 도로변 퇴적물의 중금속오염의 공간적 변화)

  • 이평구;유연희;윤성택;신성천
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.19-35
    • /
    • 2003
  • In order 새 investigate the spatial and seasonal variations of heavy metal pollution in heavily industrialized urban area, urban roadside sediments were collected for five years from gully pots in Seoul City. A series of studies have been carried out concerning the physicochemical characteristics of the sediments in order to evaluate the contamination of heavy metals such as Cd, Co, Cr, Cu, Ni, Pb and Zn. Roadside sediments and uncontaminated stream sediments were analyzed for total metal concentrations using acid extraction. The roadside sediments are characterized by very high concentrations of Zn (2,665.0$\pm$1,815.0 $\mu\textrm{g}$/g), Cu (445.6$\pm$708.0 $\mu\textrm{g}$/g), Pb (214.3$\pm$147.9 $\mu\textrm{g}$/g) and Cr (182.1$\pm$268.8 $\mu\textrm{g}$/g), indicating an artificial accumulation of these metals to the sediment chemistry. Comparing with average contents of uncontaminated stream sediments, roadside sediments were shown zinc 14 times (up to 64.4), copper 9 times (up to 181.7), lead 6 times (up to 63.7), cobalt 6 times (up to 168.7), nickel 4 times (up to 98.4), cadmium 2 times (up to 12.8) and chrome 2 times (up to 40.2) high content. The relative degree of heavy metal pollution for roadside sediments collected from each district in Seoul City is evaluated using the “geoaccumulation index”. As a result, heavy-metal contamination is highest centering the oldest residential district and industry area, and contamination level decreases as go to outer block of the city. The factor analysis results indicate that the levels of Cu, Ni, Fe and Cr are strongly related to numbers of factories, whereas the concentrations of Cr, Zn and Cd dependant on pollution index, indicating artificial contamination due to site-specific traffic density.

Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province (강원도 폐금속광산지역의 광미와 주변토양의 중금속 오염현황 및 오염도 평가)

  • Kim, Joung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.626-634
    • /
    • 2005
  • The objectives of this study was to assess pollution level and contamination status on tailings and soil in the vicinity of four disused metal mines in Kangwon province. As the result of total metal concentrations analysis, the pollution degree of tailings and soil decreased in the order of Wondong > Second Yeonhwa > Sinyemi ${\fallingdotseq}$ Sangdong mines. Total metal concentrations of mine tailings in this study were $1.2{\sim}78.2$ and $1.1{\sim}80.6$ times higher than those in the background soil and the tolerable levels suggested by Kloke, respectively. From these results, we found that tailings served as contamination source of nearby soil. According to sequential extraction of metals, large proportion of heavy metals in all mine tailings existed in the form of a residual fraction, and heavy metals in non-residual form was mainly associated with Fe-Mn oxide fraction and sulfidic-organic fraction. Fe-Mn oxide fraction and sulfidic-organic fraction of heavy metals may be released into and contaminated the nearby environment under the oxidation or reduction condition in long-term. In particular, the proportions of the exchangeable and carbonate fraction of Cd in mine tailings from Second Yeonhwa mine were relatively high. This suggests that Cd may be easily released into and contaminated the nearby environment in the near time. Concentrations of heavy metals in mine tailings and the nearby soil exceeded the standard (agricultural area) of Soil Environment Conservation Law. So it was thought that remediation for mine tailings and the nearby soil is needed. The pollution indices of the samples in this study were for higher than 1.0 and the pollution degree was very serious. Priority remediation site for these mines was Wondong. As Results of danger indices, it was showed that exchangeable form in Wondong and Fe-Mn oxide form in the rest mines should be removed preferentially.

휴ㆍ폐광산지역 폐재의 중금속 존재형태에 따른 오염순위 설정에 관한 연구.

  • 김휘중;양재의;김동진;박병길;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.75-80
    • /
    • 2002
  • Enormous volumes of mining wastes from the abandoned and closed mines are disposed without a proper treatment at Southeastern part of Kangwon Province. Erosion of these wastes contaminates soil, surface water, and sediments with heavy metals. Objectives of this research were to fractionate heavy metals in the mine waste and to assess the potential S. P. A. G.(Soil Pollution Assesment Guidance) of each metal fraction. Mine wastes analyzed for physical and chemical properties. pH of wastes ranged from 3.3 to 8.0. Contents of total N and loss on ignition matter were in the ranges of 0.2~5.6%, and 0.8~15.3%, respectively. Heavy metals in the wastes were higher in the coal mines than those in the other mine wastes. Total concentrations of metals in the wastes were in the orders of Pb > Zn > Cu > Cd, exceeded the corrective action level of the Soil Environment Conservation Law and higher than the natural abundance levels reported from uncontaminated soils. Relative distribution of heavy metal fractions was residual > organic > reducible > carbonate > adsorbed, reversing the degree of metal bioavailability. Mobile fractions of metals were relatively small compared to the total concentrations. Soil Pollution Assesment Guidance(SPAG) values were ranged from 0.08 to 9.14 based on labile fraction of metal concentrations. SPAG values of labile concentration were lower than those of total concentration.

  • PDF

A study on the Comparison of the Heavy Metal in Abandoned mine Soil by Sequential Extraction Exthaction Methods (폐광산 주변 토양 내 중금속의 연속추출법과 토양오염공정시험기준에 대한 비교 연구)

  • Lee, Jong-Deuk;Kim, Tae-Dong;Jeon, Gee-Seok;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.95-105
    • /
    • 2011
  • Total extraction method and environmental standards for heavy metals in soils were revised in regulation recently. In case of Area 3, as the law amended, the soil pollution level has gone up to 4 to 13 times higher depending on the type of heavy metal. In this study, it compares the properties of heavy metals of soil by sequential extraction and total extraction methods depending on the analysis method, using the soil around mine. In case of arsenic, the soil pollution level has gone up to 4 times higher, but 6 to 10 times in the sample soil. Also, according to the results of portability evaluation depending on the type of existence form of heavy metal it exists as residual form in mine waste rock, which is less likely to move, while it exists as migrated form in tailing. Therefore, it should be considered to evaluate the soil pollution and decide the contaminated bounds depending on the existence form of heavy metals on soil to restore the polluted soil.

Studies on Cadmium and Zinc Detoxification of Rumex maritimus (금소리쟁이(Rumex maritimus)의 카드뮴, 아연 내성에 관한 연구)

  • 김진희;이인숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.225-231
    • /
    • 1998
  • The studies on the potentiality of biomonitoring heavy metal pollution in coastal region of industrial complex were performed to investigate the heavy metal accumulation and induction of metal-binding protein (MBP) as detoxification process using Rumex maritimus. Bioconcentration in organs and MBP in root of R. maritimus was investigated for the research of the tolerance of heavy metals. The bioconcentration of cadmium and zinc in organs showed 3.6-8.0 times in root higher than in shoot, so it was found that heavy metal accumulated selectively in root. MBP increased absorbance in 254 nm and decreased in 280 nm, because it was composed of high cystein content and low aromatic acids, so absorbance had large difference between 254 nm and 280 nm. The existence of MBP in the 10-20 fraction was ascertained with anion exchange chromatography and it was identified that concentration of heavy metal increased according as an exposure concentration of medium increased in QAE Sephadex A-25 elution profile. These results suggested that MBP could play a role in biomarker determining the bioconcentration of plant. This study demonstrated a possibility that removal ability of heavy metal of R. maritimus resulted from detoxification process and MBP could be utilized as a biomarker of heavy metal pollution.

  • PDF

A Study on Correlations between Distribution of Sulfur Dioxide Concentration and Soil Environments by Using Passive Samplers (Passive Sampler를 이용한 $SO_2$ 공간농도분포 조사와 토양오염 상관성 연구)

  • Song, Young-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1025-1029
    • /
    • 2005
  • A simple analysis of atmospheric sulfur dioxide($SO_2$) pollution in industrial region was investigated using badge type passive samplers. It were set up in 76 locations and the $SO_2$ distribution evaluated along the boundary of land use type. It changed considerably both monthly and seasonally. Soil samples were also collected in 120 locations to investigate influence of sulfur dioxide pollution on soil and heavy metal distribution in the study area, where the sulfur dioxide pollutants from industrial area could affect the soil environment of near residential and green areas. The relationship between the $SO_2$ concentrations in the atmosphere and heavy metal(Cu, Pb) concentrations in the soil were analyzed, by using the correlation coefficient values and the results were 0.17 and 0.08 in industrial area. And this study indicated that the atmospheric pollution in industrial region affect the level of the soil pollution adjacent to the residential and green area. The study result may be used to define correlativity for establishing an exposure index. It will subsequently be used for a more precise assessment measuring the exposure of plants and inhabitants, for the purposes of a study en effects on health.

Heavy Metal Concentrations in Soils and Stream around the Abandoned Mine Land (폐광산 주변 토양 및 하천의 중금속 함량)

  • 전관수;이철희;원양수;정진욱;박병삼;신덕구
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.197-204
    • /
    • 1999
  • The extent of heavy metal pollution in agricultural in soils near the abandoned mine land site was investigated using their concentrations from the 47 sampling sites in B mine. Samples were prepared using 0.1N HCI - Korean Standard Methods - and then analysed for Cd, Cu, Pb, As and Cr by Inductively Coupled Plasma Spectrometer. In addition, soil and mine tailing samples were sequentially extracted to investigate the chemical speciation of heavy metals in them. The soils in the vicinity of mining area are highly contaminated by heavy metals ranging up to 5.96mg Cd/kg, 253.3mg Cu/kg, 76.7mg Pb/kg, and 15.45 mg As/kg, according to the analysis of Korean Standard Methods. The heavy metal levels by the sequential extraction are much higher than its level by Korean Standard Methods, and little correlated with each other. Based on the results, it is suggested that the As pollution in agricultural soils near the AMLS should be dealt as of prior significance in establishing reclamation strategies for the area.

  • PDF

Study on the Removal of Heavy Metal Ion by Bark (수피(樹皮)를 이용(利用)한 중금속오염제거(重金屬汚染除去)에 관(關)한 연구(硏究))

  • Choi, Byoung-Dong;Jun, Yang;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 1984
  • The removal and readsorption effects of pine and oak bark grown in Korea on water pollution caused by heavy metal ions have been investigated. Bark saturated with heavy metal ions is refleshed with 0.1 N ammonium acetate and then its readsorption has been done. The results obtained are as follows: 1. Adsorption effect of pine bark is similiar to that of oak bark, and 20-40 meshed bark gives the best results. 2. 0.1 N amonium acetate of pH 7 shows more elutriative than the others such as pH 3 hydrochloric acid, pH 10 ammonium hydroxide and pH 7 water. 3 Pine bark refleshed with 0.1 N ammonium acetate gets two times as effective in adsorption as raw bark, and shows more effective than oak bark.

  • PDF

Analysis for Soil Pollution by Heavy Metals in the Area of Kyongbuk (경북지역 토양의 중금속 분석)

  • Dho, Hyon-Seung;Kim, Sung-Duk;Lee, Seung-Joo
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.231-236
    • /
    • 2010
  • The investigation was initiated with data from 27 abandoned mines along with 12 locations in Kyongbuk abandoned mines. The analyses for soil pollution by heavy metal pollutants were conducted by using correlation analysis, cluster analysis, and principal component analysis. The correlation analysis indicated that Ni and pH were highly correlated compared to those of other heavy metal ions. The principal component analyses showed that the heavy metal ions might be classified into two catagories, such as antropogenic and lithogenic components. The cluster analysis was also clearly divided by two groups. The respective two groups might be Pb-Zn-Cd-Cu and As-Hg-Ni.

Pollution of Heavy Metals in Paddy Soils Around the Downstream Area of Abandoned Metal Mine and Efficiency of Reversed Soil Method as Its Remediation (폐금속광산 하부 농경지 토양의 중금속오염과 그 복구방법으로서 반전객토의 효율성)

  • Na, Choon-Ki;Lee, Mu-Seong;Chung, Jae-Il
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • In order to investigate the dispersion patterns and contamination level of heavy metals in the soil-ecosystem and to evaluate the efficiency of soil remediation by reversed soil method, soils and plants were collected from the Dongjin Au-Ag-Cu mine area and analysed for heavy metals. The dispersion patterns of heavy metals in soils and plants show that heavy metal pollutions caused by waste rump around Dongjin mine are mainly found in the vicinity of the waste rump and in the southward slanting of mine. Toxic metallic pollutants from the mine influence heavy metal contents in paddy soils in downstream area, and may be a potential sources of heavy metal pollution on crop plants. Soil samples collected from the remediated rice farming field by reversed method show similar levels of heavy metal content to those from the polluted rice farming field, but topsoil enrichment of heavy metals are not found. Heavy metal contents of the rice plants collected from remediated rice farming field are significantly lower than those from polluted rice farming field, and it suggests that the reversed soil method is effective for the reduction of bioavailability of heavy metals.

  • PDF