• 제목/요약/키워드: Metal Pollution

검색결과 762건 처리시간 0.029초

진해만 퇴적물의 퇴적속도와 중금속 오염 (Pollution of Heavy Metals and Sedimentation Rates in Sediment Cores from the Chinhae Bay, Korea)

  • 양한섭;김성수;김규범
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.103-103
    • /
    • 1995
  • In the Chinhae Bay, Korea, sedimentation rates and sedimentary record of anthropogenic metal loads were determined by $^{210}Pb$ dating and heavy metal analysis of four sediment cores . The sedimentation rates varied from 0.16g/$cm^2$/yr(3.1mm/yr) at Sta. Ct, located within narrow waterway to 0.24g/$cm^2$/yr(4.8mm/yr) at Sta. Cl, located in Haengam Bay. Maximum contents of Mn, Zn, Cu and Cr were observed at Sta. C2 located near the mouth of Masan Bay, while minimum contents were observed at Sta. CB. Mn/Fe ratios at Sta. C2 and Sta. C4 showed gradually increasing and decreasing downward, respectively, in the upper layer of sediment cores. This suggests that Mn may be diagenetically redistributed in highly reduced environment. At Sta. C2, the concentrations of Zn and Cu began to increase from 1920s by anthropogenic input and have been remarkablely increasing since mid 1960s. At Sta. C3, located near Sungpo, anthropogenic input of these two elements has also slightly increased after 1970s. However, pollution of these two elements was not significant in Haengam Bay(Sta. Cl) and Chiljun watenway(Sta. C4). The pollution of Co, Ni and Cr was not remarkable in all core samples except surface sediment of Sta. C2. The total input of anthropogenic Zn and Cu since 1920s was estimated to be 28∼792 ㎍/cm2 and 0∼168㎍/cm2, respectively. Sta. C2 showed remarkablely higher values relative to other stations: anthropogenic loads of Zn and Cu constituted 27% and 29% of the total sedimentary inventories at the present day, respectively. Fe, Ni, Cr and Co contents showed good correlation(r>0.8) with each other. Anthropogenic Zn and Cu also showed a very good positive correlation(>0.9). However, correlation between these two group of element was quite scattered, indicating different sources and geochemical behaviors.

진해만 퇴적물의 퇴적속도와 중금속 오염 (Pollution of Heavy Metals and Sedimentation Rates in Sediment Cores from the Chinhae Bay, Korea)

  • 양한섭;김성수;김규범
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.489-500
    • /
    • 1995
  • In the Chinhae Bay, Korea, sedimentation rates and sedimentary record of anthropogenic metal loads were determined by $^{210}Pb$ dating and heavy metal analysis of four sediment cores . The sedimentation rates varied from 0.16g/$cm^2$/yr(3.1mm/yr) at Sta. Ct, located within narrow waterway to 0.24g/$cm^2$/yr(4.8mm/yr) at Sta. Cl, located in Haengam Bay. Maximum contents of Mn, Zn, Cu and Cr were observed at Sta. C2 located near the mouth of Masan Bay, while minimum contents were observed at Sta. CB. Mn/Fe ratios at Sta. C2 and Sta. C4 showed gradually increasing and decreasing downward, respectively, in the upper layer of sediment cores. This suggests that Mn may be diagenetically redistributed in highly reduced environment. At Sta. C2, the concentrations of Zn and Cu began to increase from 1920s by anthropogenic input and have been remarkablely increasing since mid 1960s. At Sta. C3, located near Sungpo, anthropogenic input of these two elements has also slightly increased after 1970s. However, pollution of these two elements was not significant in Haengam Bay(Sta. Cl) and Chiljun watenway(Sta. C4). The pollution of Co, Ni and Cr was not remarkable in all core samples except surface sediment of Sta. C2. The total input of anthropogenic Zn and Cu since 1920s was estimated to be 28~792 $\mu\textrm{g}$/cm2 and 0~168$\mu\textrm{g}$/cm2, respectively. Sta. C2 showed remarkablely higher values relative to other stations: anthropogenic loads of Zn and Cu constituted 27% and 29% of the total sedimentary inventories at the present day, respectively. Fe, Ni, Cr and Co contents showed good correlation(r>0.8) with each other. Anthropogenic Zn and Cu also showed a very good positive correlation(>0.9). However, correlation between these two group of element was quite scattered, indicating different sources and geochemical behaviors.

  • PDF

인천 H항 표층 퇴적물의 오염도 평가 (Estimation of Pollution Degree of Surface Sediment from Incheon H Wharf)

  • 김정호;남세용
    • 해양환경안전학회지
    • /
    • 제20권5호
    • /
    • pp.504-510
    • /
    • 2014
  • 본 연구에서는 2014년 03월에 인천 H항의 5개 정점(S1~S5)에서 채취된 표층 퇴적물의 물리화학적 특성을 조사하고, COD, AVS, IL 및 중금속(Cd, Cu, Ni, Pb, Zn, Cr, Hg)을 분석하여 오염도를 평가하였다. 입도분석, 비표면적분석, XRD 및 XRF 분석을 통하여 채취된 퇴적물 시료 모두 거의 동일한 산화물과 광물로 구성되었음을 확인하였다. 국내기준으로 COD, AVS 및 IL 세 항목의 총점에 대한 오염도는 S2, S3, S5 지점은 2등급으로 S1, S4 지점은 3등급으로 평가되었다. 중금속 오염의 경우 Cd, Ni, Pb은 USEPA 기준으로 중간오염에 해당하였고, Cu, Zn 및 Cr은 심한오염으로 분류되었다. 농집지수를 이용한 오염도 평가결과 Cd가 Class 3으로 평가되었고, 농축계수를 이용한 평가결과 모든 지점에서 Cd, Pb, Zn의 경우 1보다 큰 것으로 나타났다. 또한 총농축계수는 S4지점이 3.1로 가장 높은 것으로 나타났다.

Microcosm Experiment for Evaluating Efficiency of Chemical Amendments on Remediation of Heavy Metal Contaminated Soil

  • Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Yang, Jae E.;Ji, Won Hyun;Kim, Sung Chul
    • 한국토양비료학회지
    • /
    • 제48권2호
    • /
    • pp.138-145
    • /
    • 2015
  • Heavy metal pollution in agricultural field near the abandoned metal mines is a critical problem in Korea. General remediation technique is to apply chemical amendments and soil covering. However, there is no specific guidelines for conducting soil covering. Therefore, main objective of this research was to determine optimum soil covering technique with microcosm experiment. Three different chemical amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge (AMDS), were examined and varied soil covering depth, 20, 30, 40cm, was applied to determine optimum remediation technique. Bioavailable heavy metal concentration in soil and total concentration of heavy metals in crop were monitored. Result showed that average heavy metal concentration in varied soil covering depth was ordered as 40 cm ($14.5mg\;kg^{-1}$) < 20 cm ($14.6mg\;kg^{-1}$) < 30 cm ($16.0mg\;kg^{-1}$) and also heavy metal concentration in crop was ordered as 40 cm ($100{\mu}g\;kg^{-1}$) < 30 cm ($183{\mu}g\;kg^{-1}$) < 20 cm ($190{\mu}g\;kg^{-1}$). In terms of chemical amendments, average heavy metal concentration was decreased as AMDS ($150{\mu}g\;kg^{-1}$) < SS ($151{\mu}g\;kg^{-1}$) < LS ($154{\mu}g\;kg^{-1}$). Overall, depth of soil covering should be over 30 cm to minimize bioaccumulation of heavy metals and SS and LS could be applied in heavy metal contaminated soil for remediation purposes.

통영연안 표층퇴적물에서의 유기물과 미량금속 분포 특성 및 생태위해성 평가 (Distribution of Organic Matter and Trace Metals in Surface Sediments and Ecological Risk Assessment in the Tongyeong Coast)

  • 양원호;이효진;김기범
    • 한국해양학회지:바다
    • /
    • 제21권4호
    • /
    • pp.125-133
    • /
    • 2016
  • 본 연구는 통영연안의 오염 현황을 파악하기 위하여 표층퇴적물의 유기물 분포 특성, 미량금속의 공간적인 분포 특성과 오염도 및 생태계 위해성평가를 하였다. 총질소(Total nitrogen, TN), 총유기탄소(Total organic carbon, TOC)와 산 휘발성 황화물(Acid volatile sulfide, AVS)은 협수로에 위치한 정점 35-38에서 높은 농도를 나타내었다. Cd, Cr, Ni, Co, Hg, Zn의 공간적 분포양상은 유사하였으며, 이와 달리 Cu는 협수로에서 높은 농도를 나타내었다. 미량금속 원소의 오염도를 농축계수(Enrichment Factor, EF)로 평가한 결과, Cd이 모든 정점에서 오염되지 않은 상태(No enrichment), Pb, Cr, Ni, Co, Zn, Hg이 약간 오염상태(Minor enrichment), Cu가 약간~중간 오염상태(minor-moderate enrichment)의 오염도를 나타냈다. 미량금속에 의한 생태위해성 수준은 오비도와 미륵도 사이의 협수로 정점에서 국지적으로 생태계에 잠재적 위해성이 있는 것으로 나타났다.

반응물질이 도포된 연직배수재를 활용한 인천지역의 중금속 오염토양 정화에 관한 연구 (Remediation Efficiency Evaluation of Heavy Metal Contaminated Soils by Reactive Material Covered Vertical Drains in Incheon)

  • 신은철;어재원;김기성
    • 한국지반신소재학회논문집
    • /
    • 제14권2호
    • /
    • pp.45-55
    • /
    • 2015
  • 인천지역은 1960년대 경제개발계획과 함께 중공업위주의 임해공업단지와 항만시설, 해안매립에 의한 공업용지가 조성되었고, 이러한 산업단지는 준설한 실트질 모래로 매립되어 저투수성 지질특성을 가지고 있다. 따라서, 본 연구에서는 인천의 지질특성에 적합한 토양오염 정화를 위해 친환경 소재로 개발된 배수재의 필터에 중금속 흡착에 효과적인 제올라이트를 도포하여 중금속흡착능력을 평가하였다. 오염물질은 토양오염 조사 자료와 문헌 조사를 통해 현재 공업 산업단지에서 가장 문제가 되고 있는 구리(Cu), 납(Pb), 카드뮴(Cd)으로 설정하였고, Visual Modflow를 이용한 수치해석을 통해 가장 효율적인 배수재 타설 간격 및 형식을 제시하였다.

Concentration Dependent Effect of Heavy Metals on Soil Carbon Mineralization

  • Walpola, Buddhi Charana;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.551-554
    • /
    • 2012
  • The present laboratory investigation was conducted to assess the effect of heavy metals on carbon mineralization. Soil was treated with three concentrations (50, 100 and $150{\mu}mol\;g^{-1}$ soil) of two heavy metals (Cd and Zn) in a factorial combination of treatments replicated four times. Determination of carbon mineralization was carried out at 3, 7, 14, 21, 28, 42 and 56 days after metal treatments.. The amount of $CO_2$-C released from heavy metal treated soils was found to be decreased at an increasing rate during the first 28 days, followed by slow release as incubation progressed. The total amounts of $CO_2$-C released were 448, 382 and $348mg\;kg^{-1}$ soil respectively for soils treated with 50, 100 and $150{\mu}mol\;g^{-1}$ soil of Zn. The corresponding figures for Cd treated soils were 406, 354 and $282mg\;kg^{-1}$ soil implying that dose-dependent reduction in cumulative $CO_2$-C released from soils. The inhibition of carbon mineralization was found to be high in Cd treated soils than that of Zn treated. Therefore, tolerance and adaptation of the microbial community is likely to be related to the concentration and the type of metal. According to the results, carbon mineralization can be considered as possible indicator of soil pollution by means of heavy metals.

전남 남부 반폐쇄적인 내만 갯벌 퇴적물의 지화학적 특성 (Geochemical Characteristics of Intertidal Sediment in the Semi-enclosed Bays of the Southern Region of Jeollanam Province)

  • 황동운;김평중;전상백;고병설
    • 한국수산과학회지
    • /
    • 제46권5호
    • /
    • pp.638-648
    • /
    • 2013
  • To understand the geochemical characteristics of intertidal sediment in a semi-enclosed bay, we measured various geochemical parameters, including grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Al, Fe, Cu, Pb, Zn, Cd, Hg, and As), in intertidal sediment from three bays (Deukryang Bay, Yeoja Bay, and Gamak Bay) in the southern region of Jeollanam Province. The intertidal sediment in Deukryang Bay consisted of various sedimentary types, such as sand, gravelly muddy sand, mud, and silt, whereas the intertidal sediments in Yeoja and Gamak Bays were composed mainly of mud. The concentrations of IL, COD, AVS and trace metals in the intertidal sediments of the three study regions were relatively high near areas affected by input of stream waters and/or shellfish farming waste. The concentrations of organic matter and trace metals in Gamak Bay were much higher than those in Deukryang and Yeoja Bays, which appears to be due to the influence of anthropogenic pollutants, originating from the city and the industrial complex near Gamak Bay. The evaluation results of organic matter and metal pollution using the sediment quality guidelines showed that the intertidal sediments in the three study regions were not polluted in terms of organic matter and trace metals. In future, sustainable management for sources of organic matter and trace metal is necessary to conserve a healthy benthic ecosystem in intertidal sediments.

금속폐광산주변의 토양, 식물 및 하천의 중금속오염에 대한 지화학적 연구 -달성 및 경산광산- (Geochemical Study on Pollution of Heavy Metals in Soils, Plants and Streams in the Vicinity of Abandoned Metal Mines -Dalseong and Kyeongsan Mines-)

  • 이재영;이인호;이순영
    • 자원환경지질
    • /
    • 제29권5호
    • /
    • pp.597-613
    • /
    • 1996
  • The tonnage of copper and tungsten produced at Dalseong mine by Taehan Tungsten Mining Company from 1961 to 1971 was 48,704 tons (M/T) of 4 wt.% Cu and 1,620 tons (S/T) of 70wt.% WO, but the mine was closed in 1974. Kyeongsan mine is a small abandoned cobalt mine with no data of production. To investigate the pollution level of the mine areas, soils, plants (Ohwi and Pampanini), stream waters and stream sediments were taken and Fe, Mn, Cu, Pb, Zn, Ni, Co, Cd and Cr were analysed by ICP. Soils are considerably contaminated by the heavy metals related to ore deposits, The heavy metal contents in plants vary with the species and parts of plants. Stream waters are anomalously high in heavy metals in the vicinity of the mines but the contents decrease downstream in the process of dilution and precipiation. However, heavy metal contents increase very high in stream sediments due to precipiation. To protect environmental damages caused by acid mine drainages wetlands must be constructed outside pits, and it is necessary to fill pits with waters, limestone chips and organic materials, which give reducing and alkaline condition to ores. Under the condition pyrite is protected from oxidation and aqueous iron sulphates precipitate to form stable secondary pyrite.

  • PDF

대기 중 $CO_2$ 및 토양 중 Pb 농도 증가가 공벌레의 성장과 공벌레 체내 Pb 축적에 미치는 영향에 관한 연구 (Studies on Effect of $CO_2$ Concentration in Air and Pb Concentration in Soil on Pillbug Growth and Bio-accumulation)

  • 황화연;이상돈
    • 환경영향평가
    • /
    • 제19권6호
    • /
    • pp.539-546
    • /
    • 2010
  • In nature, the overall effect of heavy metals on the biota can be influenced by a number of environmental factors like soil characteristics and air pollution by elevated $CO_2$. Pillbugs(Isopoda, Armadillium vulgare) take up heavy metals with their food and store them mainly in the vesicles of hepatopancreas. They accumulate certain metals, occuring in relatively large numbers, are easily collected and identified. Therefore, it has been suggested that total body concentration of metals in pillbugs could be positively correlated to the levels of environmental exposure and that pillbugs could be used as biological indicators of metal pollution and global change by $CO_2$. The aim of the study is to determine effects of heavy metal concentrations in soil and elevated $CO_2$ on pillbugs'body accumulation of heavy metal and growth rate. In this study, pillbugs were collected at five sites (N=287) May 2006. Cu and Zn concentrations in pillbugs were higher than in soils (1.39-41.70 times) than in control. The high bioconcentration of lead in Sangam may be partly associated with reclaimed land uses. Pillbugs in low $CO_2$ and Pb condition showed higher growth rate than in elevated $CO_2$ and Pb condition.