• Title/Summary/Keyword: Metal Melting

Search Result 481, Processing Time 0.032 seconds

3D printed surveyed restoration and metal framework in removable dentures: A case report (3D 프린팅 된 서베이드 금관과 금속 프레임워크를 이용한 양악 가철성 의치 수복 증례)

  • Song Yi Park;Sang-Won Park;Chan Park;Woohyung Jang;Kwi-Dug Yun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.153-159
    • /
    • 2023
  • Computer-aided design-computer-aided manufacturing technology has been widely used in the manufacture of fixed prostheses including implants, but in the case of removable dentures, the analog method is still being used due to the errors such as a lack of fusion and over-fusion in selective laser meting process. With the recent development of CAD software, virtual surveying and framework design are made possible, and the designed file can be manufactured by milling or 3D printing. It replace the analog method of waxing and denture curing process and also can reduce the production time and cost. Therefore, this case is reported because good clinical results were obtained by digitally surveying on CAD software to produce a surveyed metal restoration and framework on maxillary and mandibular removable dentures.

Distribution Behavior of Natural Radionuclide Pb in Molten Fe to Metal/Slag/Gas Phase (용융 Fe 중 천연방사성핵종 Pb의 금속/슬래그/가스상으로의 분배거동)

  • So-Yeong Lee;Hyeon-Soo Kim;Jong-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.54-61
    • /
    • 2024
  • When steel contaminated with Pb, produced by the decay of natural radionuclides, is remelted, Pb distributes among the metal, slag, and gas phases. In this study, 5 wt%Pb was added to Fe and melted with CaO-SiO2-Al2O3-MgO slag to investigate Pb's distribution in the metal/slag/gas. As slag basicity ((wt%CaO)/(wt%SiO2)) increased, Pb solubility in Fe slightly increased, while Pb in the slag tended to decrease. Consequently, the slag/metal distribution ratio of Pb decreased with increasing basicity. Thermodynamic calculations revealed that the slag/Fe phase distribution ratio of Pb remained very low irrespective of the activity coefficient of PbO in the slag, consistent with the experimental results. The calculated evaporation rate of Pb in Fe-Pb was approximately 22 times that of Fe; hence, most of the Pb evaporated into the gas phase.

Densification Behavior and Magnetic Properties of Fe-2%Ni Sintered Compact Fabricated by Metal Injection Molding (사출성형법에 의해 제작된 Fe-2%Ni연자성 소결체의 소결 및 자기적 특성)

  • Lim, Tae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.278-283
    • /
    • 2019
  • 3 kinds of fine powder, Fe-2%Ni alloy powder(N Ltd.) and Fe+2%Ni mixed powder(B Ltd. and S Ltd.), were fabricated into sintered compacts of bending strength specimens and ring type specimens by metal injection molding, debinding and controlling sintering conditions (reduction and sintering atmospheres, sintering temperature, sintering time and cooling rates). Density and magnetic properties of the sintered compacts were evaluated with the following conclusions. (1) When each compact was hold at 1123K for 3.6ks in H2 and sintered at 1623K for 14.4ks in Ar, the density of N, B and S Ltd.'s sintered compacts were measured as 96, 99 and 99%, and oxygen/carbon contents were measured as 0.0041%O/0.0006%C, 0.0027%O/0.0022%C, and 0.160%O/0.0026%C, respectively. (2) Magnetic characteristics of B Ltd. compact in Ar with the best results showed $B_{25}=14.3KG$, $B_r=7.75KG$, and $H_c=2.1Oe$, but not enough as those made by melting process. (3) Magnetic properties of B Ltd. compact which were sintered at 1673K for 14.4ks in Ar gas, and cooled at $0.83Ks^{-1}$ to 1123K and then cooled at $0.083Ks^{-1}$ down to room temperature were measured as $B_{25}=14.8KG$, $B_r=8.3KG$, and $H_c=1.3Oe$, almost similar to those made by melting process. Objected soft magnetic materials properties were obtained through sintering process by controlling sintering conditions (reduction condition, sintering atmosphere, sintering temperature and sintering time) and cooling rates.

Thermal Expansion and Contraction Characteristics of Continuous Casting Carbon Steels (연속주조용 탄소강에서 상변화에 따른 열팽창 및 수축 거동)

  • Kim, H.C.;Lee, J.H.;Kwon, O.D.;Yim, C.H.
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.137-143
    • /
    • 2003
  • The air gap between the metal and mold, formed by shrinkage during solidification, causes surface and subsurface cracks in the continuous casting process. Molten crack on the surface might also occur due to improper heat transfer between them. In order to compensate the air gap in mold design, the thermal contraction is an essential factor. In this study, the thermal contraction and expansion behaviors were examined from the ($\alpha$ and pearlite)/${\gamma}$ to ${\gamma}$/$\delta$ transformations in continuous casting steels by the commercial dilatometer and the self- assembled dilatometer with laser distance measurement. It was found that the thermal contraction and expansion behaviors were very dependant on the phase transformation of the ${\gamma}$/$\delta$ as well as ($\alpha$ and pearlite)/${\gamma}$. The sudden volume change from $\delta$ to ${\gamma}$ which might cause cracks in the continuous casting process, was observed on cooling just below the melting temperature by the self-assembled dilatometer.

Thermal Characteristics of Rotating Anode X-ray Tube with Emissivity in Aging Process for Digital Radiography

  • Lee, Seok Moon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.125-131
    • /
    • 2015
  • We investigated the thermal characteristics of rotating anode X-ray tube to develop it for digital radiography by using computer simulation. The target which is the area of the anode struck by electrons is the most important component to get a long life of X-ray tube. So we analyze the thermal characteristics of the target and rotor assembly according to their emissivity by using ANSYS transient thermal simulation and then compare with the measured data of the target temperature operating in aging process of X-ray tube. Especially, keeping the lead coated layer as the role of metal lubricant on ball bearing enables to prevent the noise in rotating anode. The simulation result showed that its temperature was under the melting point of the lead in X-ray tube for digital radiography with 1.2 mm large focal spot 0.6 mm small focal spot and 150 kV tube voltage. We also investigated the relationship between the diameter of the anode shaft and the temperature of the anode and rotor assembly. It has been confirmed that the smaller anode shaft could be good for the rotor thermal characteristics.

The Effect of the Te on the Microstructure of Rapidly Solidification Ag-Sn-In Contact Material (급속응고한 Ag-Sn-In계 접점재료의 미세조직에 미치는 Te 의 영향)

  • Chang, Dae-Jung;Kwon, Gi-Bong;Kim, Young-Ju;Cho, Dae-Hyoung;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.86-91
    • /
    • 2007
  • Contact material is widely used as electrical parts. Ag-CdO has a good wear resistance and stable contact resistance. But the disadvantages of Ag-Cd alloy are coarse Cd oxides and harmful metal, Cd. Then Ag-Sn alloy that has stable and fine Sn oxide at high temperature has been developed. In order to investigate the effect of Te additional that affects the formation of the oxide layer on the surface and the formation of oxide in matrix Ag, we studied the microstructures and properties of Ag-Sn-In(-Te) material fabricated by rapid solidification process. The experimental procedure were melting using high frequency induction, melt spinning, and internal oxidation. Specimens were examined and analyzed by Transmission electron microscopy(TEM), energy dispersive X-ray spectroscopy(EDS) and Vickers hardness. As a result, internal oxidation was completed even at $600^{\circ}C$. Te forms coarse $In_{2}TeO_{6}$ phase and makes fine and well dispersed $SnO_{2}$ Phase. 0.3 wt% Te shows favorable properties.

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys Part I : Solidification Cracking in the Fusion Zone (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part I : 용착금속의 응고균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.78-89
    • /
    • 1997
  • This study has evaluated the weld metal solidification cracking behavior of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). Austenitic stainless steels(304, 310S) were also included for comparison. In addition, a possible mechanism of solidification cracking in the fusion zone was suggested based on the extensive microstructural examinations with SEM, EDAX, TEM, SADP and AEM. The solidification cracking resistance of Ni base superalloys was found to be far inferior to that of austenitic stainless steels. The solidification cracking of Incoloy 825 and Inconel 718 was believel to be closely related with the Laves-austenite (Ti rich in 825 and Nb rich in 718) and MC-austenite eutectic phases formed along the grain boundaries during solidification. Cracking in Inconel 600 was always found along the grain boundaries which were enriched with Ti and P. Further, solidifidcation cracking resistance was dependent not only upon the type of love melting phases but also on the amount of the phases along the solidification grain boundaries.

  • PDF

Effects of Viscosity Control by Induction Heating on Micro Cell in Forming Process of Foamed Aluminum (알루미늄 발포재의 성형공정에서 유도가열 법에 의한 점도 제어가 미세 기공에 미치는 영향)

  • Jeon, Yong-Pil;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.136-144
    • /
    • 2002
  • Melting method has long been considered difficult to realize because of problems such as the low foamability of molten metal, the varying size of cellular structures and solidification shrinkage. The parameters to solve the problem in electric furnace were stirring temperature, stirring velocity, heating velocity and foaming temperature It is important to consider the effects of induction heating, because it brings about the inner flow by the temperature gradient. Aspect ratio also depends on the induction heating. Mechanical properties are dependent on cell sizes and aspect rations. Therefore, this paper presents the effects of these parameters on the cell sizes. For the sake of this, combined stirring process was used to fabricate aluminum foam materials by the above mentioned parameters. Image analysis was performed to calculate the cell sizes, distributions, and aspect ratioes at the cross section of feared aluminum in the direction of height.

A Study on the Heat-Diffusion Prediction of Induction Heating JAR using Finite Element Method (유한요소법을 이용한 IH-JAR의 열확산 예측에 관한 연구)

  • 오홍석
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.8-13
    • /
    • 2002
  • Induction heating is widely used in today's industry, in operations such as metal hardening, pre-heating for forging operations, melting or cooking. In this paper, the magneto-thermal analysis of an induction heating jar(IH-JAR) was presented as an efficient design. The magnetic field intensity inside the axisymmetric shaped cooker was analyzed using three-dimensional axisymmetric finite element method(FLUX2D) and the effectual heat source was obtained by ohmic losses from eddy currents induced in the jar. The heat was calculated using the heat source and heating equation. Also, it was presented the temperature characteristics of the IH-JAR according to time and relative permeability in stainless parts and in aluminum parts.

Modeling of the Ignition and Combustion of Single Aluminum Particle (단일 알루미늄 연료 입자의 점화 및 연소 모델링)

  • Yang, Hee-Sung;Lim, Ji-Hwan;Kim, Kyung-Moo;Lee, Ji-Hyung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.187-192
    • /
    • 2008
  • A simplified model for an isolated aluminum particle burning in air is presented. Burning process consists of two stages, ignition and quasi-steady combustion (QSC). In ignition stage, aluminum which is inside of oxide film melts owing to the self heating called heterogeneous surface reaction (HSR) as well as the convective and radiative heat transfer from ambient air until the particle temperature reaches melting point of oxide film. In combustion stage, gas phase reaction occurs, and quasi-steady diffusion flame is assumed. For simplicity, 1-dimesional spherical symmetric condition and flame sheet assumption are also used. Extended conserved scalar formulations and modified Shvab-Zeldovich functions are used that account for the deposition of metal oxide on the surface of the molten aluminum. Using developed model, time variation of particle temperature, masses of molten aluminum and deposited oxide are predicted. Burning rate, flame radius and temperature are also calculated, and compared with some experimental data.

  • PDF