• Title/Summary/Keyword: Metal Fuel

Search Result 855, Processing Time 0.026 seconds

Investigation into Air Pollution in Car Shipping Workshop in Pyeongtaek Port (자동차 선적작업장의 공기오염 실태조사)

  • Kim, Ji-Ho;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • This study purposed to investigate air pollution in car shipping yards and, for this purpose, we selected an outdoor open-air yard and an indoor ramp into the ship and measured the concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10, PM2.5 and heavy metals in the air. The results of this study are as follows. No significant difference was observed in temperature and humidity between the outdoor and indoor workshop, and the average air flow was 0.52 m/s in the indoor workshop, which is higher than 0.19 m/s in the outdoor workshop(p<0.01). The average concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10 and PM2.5 according to workplace were 0.03 ppm(${\pm}0.01$), 0.03 ppm(${\pm}0.01$), 0.46 ppm(${\pm}0.22$), $39.44{\mu}g/m^3$(${\pm}2.45$) and $5.45{\mu}g/m^3$(${\pm}1.15$) respectively in the outdoor workshop, and 0.15 ppm(${\pm}0.05$), 0.22 ppm(${\pm}0.06$), 8.85 ppm(${\pm}3.35$), $236.39{\mu}g/m^3$(${\pm}58.21$) and $152.43{\mu}g/m^3$(${\pm}35.42$) respectively in the indoor workshop. Thus, the concentrations of gaseous substances in the indoor workshop were 4.9-19.2 times higher than those in the outdoor workshop, and the concentrations of fine dusts were 5.9-27.9 times higher(p<0.01). In addition, according to the result of investigating pollutant concentrations according to displacement and the number of car loaded when shipping gasoline cars into the ship, no significant relation between the number of cars loaded and pollutants was observed in shipping passenger cars, but the concentrations of nitrogen dioxide and carbon monoxide got somewhat higher with the increase of the number of cars loaded(p<0.05). In addition, the concentrations of nitrogen dioxide, carbon monoxide, PM10 and PM2.5 in the air were significantly higher when shipping recreational vehicles, the displacement of which is larger than passenger cars, than when shipping passenger cars(p<0.01). On the other hand, the average heavy metal concentrations of the air in indoor workshop were: lead $-0.05{\mu}g/m^3$(${\pm}0.10$); chromium $-0.90{\mu}g/m^3$(${\pm}0.18$); zinc $-0.38{\mu}g/m^3$(${\pm}0.24$); copper $-0.18{\mu}g/m^3$(${\pm}0.22$); and manganese and cadmium not detected. In addition, the complaining rates of 'asthma,' a major symptom of chronic respiratory diseases, were 18.5% and 22.5% respectively in indoor workers and outdoor workers. Thus the rate was somewhat higher in indoor workers but the difference was not statistically significant. The complaining rates of 'chronic cough' and 'chronic phlegm' were very low and little different between indoor and outdoor workers. The results of this study show that the reason for the higher air pollution in indoor than in outdoor workshop is incomplete combustion of fuel due to sudden start and over-speed when cars are driven inside the ship. In order to prevent high air pollution, efficient management measures should be taken including the observance of the optimal speed, the improvement of old ships and the installation of efficient ventilation system.

Development of Liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth (수지상 우라늄 성장억제를 위한 액체카드뮴 음극구조 개발)

  • Paek, Seung-Woo;Yoon, Dal-Seong;Kim, Si-Hyung;Shim, Jun-Bo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • The LCC (Liquid Cadmium Cathode) structure to be developed for inhibiting the formation and growth of the uranium dendrite has been known as a key part in the electrowinning process for the simultaneous recovering of uranium and TRU (TRans Uranium) elements from spent fuels. A zinc-gallium (Zn-Ga) experimental system which is able to be functional in aqueous condition and normal temperature has been set up to observe the formation and growth phenomena of the metal dendrites on liquid cathode. The growth of the zinc dendrites on the gallium cathode and the performance of the existing stirrer type and pounder type cathode structure were observed. Although the mechanical strength of the dendrites appeared to be weak in the electrolyte and easily crashed by the various cathode structures, it was difficult to effectively submerge the dendrite into the bottom of the liquid cathode. Based on the results of the aqueous phase experiments, a lab-scale electrowinning experimental apparatus which are applicable to the development of LCC srtucture for the electrowinning process was established and the performance tests of the different types of LCC structure were conducted to prohibit the uranium dendrite growth on LCC surface. The experimental results of the stirrer type LCC structures have shown that they could not effectively remove the uranium dendrites growing at the inner side of the LCC crucible and the performances of the paddle and harrow type LCC structure were similar. Therefore a mesh type LCC structure was developed to push down the uranium dendrites to the bottom of the LCC crucible growing on the LCC surface and at the inner side of the crucible. From the experimental results for the performance test of the mesh type LCC structure, the uranium was recovered over 5 wt% in cadmium without the growth of uranium dendrites. After completion of the experiments, solid precipitates of the bottom of the LCC crucible were identified as an intermetallic compound (UCd11) by the chemical analysis.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.

The Absorption and Purification of Air Pollutants and Heavy Metals by Selected Trees in Kwangju (광주지역(光州地域)에서 주요(主要) 수목(樹木)의 대기오염물질(大氣汚染物質)과 중금속(重金屬) 흡수(吸收) 정화기능(淨化機能)에 관(關)한 연구(硏究))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.510-522
    • /
    • 1999
  • The air pollutants ; $SO_2$, $SO{_4}^{-2}$, $NO{_3}^-$, $Cl^-$ are absorbed into soils through falling with dusts and rain from the atmosphere. The sources of heavy metal contaminants in the environments are agricultural and horticultural materials, sewage sludges, fossil fuel combustion, metallurgical industries, electronics and waste disposal etc.. The soils and hydrosphere can be polluted on the way of the circulation of these heavy metals. Studied pollutant anions are $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ and heavy metals are Se, Mo, Zn, Cd, Pb, Mn, Cr, Co, V, As, Cu and Ni which are the elements to be concerned with the essentials for plants, with animal and human health. This study is with the aim of selecting the species of roadside trees and green space trees which have excellent absorption of air pollutants and heavy metals from the atmosphere and the soils in the urban area. Two areas are designated to carry out this study : urban area ; Kwangju city and rural area ; the yard of Forest Environment Institute of Chollanam-do, at Sanje-ri, Sampo-myum, Naju city, Chollanam-do (23km away from Kwangju). This study is carried out to understand the movement of anions and heavy metals from the soils to the trees in both areas, the absorption of anions and heavy metals from atmosphere into leaves and the amounts of anions and heavy metals in leaves and fine roots(< 1mm dia.) of roadside trees and green space trees in Kwangju and trees in the yard of Forest Environment Institute of Chollanam-do. The tree species selected for this study in both areas are Ginkgo biloba, Quercus acutissima, Cedrus deodara, Platanus occidentalis, Robinia pseudoacacia, Alnus japonica. Metasequoia glyptostroboides. Zekova serrata. Prunus serrulata var. spontanea, and Pinus densiflora. The results of the study are as follows : 1. $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ concentrations are higher in the soils of the urban area than in those of the rural area, and $NO{_3}^-$ and $SO{_4}^{-2}$ are higher in the leaves than in the roots due to the absorption of the these pollutants through the stomata. 2. Ginkgo biloba, Robinia pseudoacacia. Zekova serrata, Quercus acutissima, and Platanus occidentalis can be adequated to the roadside trees and the environmental trees due to their good absorption of $NO{_3}^-$ and $SO{_4}^{-2}$. 3. Heavy metals in the soils of both areas are in the order of Mn > Zn > V > Cr > Pb > Ni > Cu > Mo> Cd, and in the leaves and roots of the trees in the both areas are in the order of Mn>Zn>Cr>Cu>V>Ni. Both orders are similar ones except V. There are more in the urban soils than in the rural soils in amount of Mn, Zn, Pb, V, Cu. 4. It is supposed that there is no antagonism between Mn and Zn in this study. 5. Se, Co and As are not detected in the soils, the leaves and the roots in both areas. Sn, Mo, Cd and Pb are also not detected in the leaves and roots in spite of considerable amount in the soils of both areas.

  • PDF