• Title/Summary/Keyword: Metal Fuel

Search Result 861, Processing Time 0.04 seconds

Production of Fine Metal Oxide Particles in Supercritical Water (초임계수를 이용한 금속산화물 미세입자 제조)

  • Lee, Joo-Heon;Park, Young-Woo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.173-176
    • /
    • 1999
  • The production of fine metal oxide particles in supercritical water has been studied. Cobalt nitrate solution and manganese nitrate solution have been selected as model solutions for metal salt aqueous solution and the particles of cobalt oxide and manganese oxide have been produced. It was observed that the production of fine metal oxide particles in supercritical water was feasible and the dehydration rate was remarkably high in supercritical water. In spite of a short residence time (3~100 seconds), fine particles ($0.5{\sim}2{\mu}m$) have been produced. In the supercritical water process, the temperature of mixer had a significant effect on particle size and size distribution. It was observed that a change in reaction temperature resulted in the control of particle size.

  • PDF

Design for the multistage sheet metal forming of wheel disks by Design of Experiment (실험계획법을 이용한 휠 디스크의 다단판재성형 공정 설계)

  • 이명균;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.278-282
    • /
    • 2003
  • There is a strong industrial demands for the development of light-vehicle to improve fuel efficiency. It is more effective to reduce weight of the parts directly driven by an automobile engine. So the saving in weight of wheels which is operated by an automobile engine improve fuel efficiency more than other parts. There are many step of sheet metal forming in fabricating automotive wheel, so that it is difficult to design process and tools of multi-stage stamping. Traditionally, design process and tools have depended on the experience of skilled workers and it has done by trial and error methods. However, it needs too much costs and time. Taguchi methods has an advantage of the number of required experiments and reliability compared with trial and error method. In this study, Taguchi methods and response surface methods are applied to design process and tools of automotive wheel. As a result, the principal variables are selected and process conditions are optimized.

  • PDF

A study on Thermo-Structural Analysis of Supersonic Nozzle (초음속 노즐의 열구조 연성 해석에 관한 연구)

  • Kim, Kyung-Sik;Lim, Seol;Kim, Dae-Seung;Cho, Seung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.488-491
    • /
    • 2011
  • The thermo-structural analysis of the solid-fuel propulsion Nozzle is studied to estimate the thermo-structural safety of the metal nozzle. The thermal load is determined to be significantly large, Because the metal nozzle in a short combustion time is directly exposed to high pressure and temperature of combustion gas. Through a analysis result, the influence of a thermal load is estimated and henceforward a design data of thruster is used.

  • PDF

Thermal-Hydraulic Analysis of Internal Flow Blockage within Fuel Assembly of Nuclear Liquid-Metal Fast Reactor (액체금속원자로 핵연료집합체의 내부 유로폐쇄 열수력 해석)

  • Kwon Young Min;Hahn Dohee
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.47-50
    • /
    • 2002
  • The numerical simulation of a 271-rod fuel assembly of nuclear Liquid-Metal Fast Reactor (LMFR) with an infernal blockage has been carried out. Internal blockage within a subassembly is addressed in the safety assessment because it potentially has very serious consequences for the reactor as a whole. Three dimensional calculations were performed using the SABRE4 computer code for the range of blockage positions and sizes to investigate the seriousness and detectability of the internal blockage. The magnitude and location of the peak temperatures together with the temperature distribution at the subassembly exit were calculated in order to look at the potential for damage within the subassembly, and the possibility of blockage detection. The analysis result shows that the 6-subchannel blockage causes large temperature rise within a assembly with practically no change in mixed mean temperature at the assembly exit.

  • PDF

Feeding Rate Measurement of Pintle Injector Type Fuel Feeder for Metal Powder Combustor (금속분말 연소기를 위한 핀틀인젝터형 연료 공급 장치의 입자 분사량 측정)

  • Ko, Tae-Ho;Kim, Hyung-Min;Lee, Do-Hyung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.405-409
    • /
    • 2010
  • 금속분말을 청정 에너지원으로 이용하기 위해 금속분말 소형 연소기의 구현이 필요하다. 이를 위한 선행연구로 연료 공급 시스템인 핀틀인젝터형(pintle injector type) 금속분말 공급장치의 중요 성능인 분사량을 실험적으로 측정하였다. 분사량 측정 시험에 앞서 간단한 금속분말 공급 시험으로 확인된 문제점을 장치의 변경을 통해 해결하였다. 측정 시험의 결과, 연료 공급 장치에 이송 가스 압력이 상승함에 따라 많은 질유량의 금속분말이 분사되었고 압력에 따른 정량적 분사량을 확인하였다. 이송 가스와 금속분말의 혼합 성능을 개선하여 균일한 분사를 하고자 이송 가스를 25 Hz로 가진 하여 공급하였고 가진이 없는 경우의 실험결과와 비교하였다.

  • PDF

Analysis of Core Disruptive Accident Energetics for Liquid Metal Reactor

  • Suk, Soo-Dong;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.117-131
    • /
    • 2002
  • Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of the work to demonstrate the inherent and ultimate safety of conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 MWe pool- type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method and associated computer program, SCHAMBETA, was developed using a modified Bethe-Tait method to simulate the kinetics and thermodynamic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of the energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the SCHAMBETA code for various reactivity insertion rates up to 100 S/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies were also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters.

Electrochemical Performance of a Metal-supported Solid Oxide Electrolysis Cell

  • Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.121-125
    • /
    • 2019
  • A YSZ electrolyte based ceramic supported Solid Oxide Cell (SOC) and a metal interconnect supported SOC was investigated under both fuel cell and co-electrolysis (steam and $CO_2$) mode at $800^{\circ}C$. The single cell performance was analyzed by impedance spectra and product gas composition with gas chromatography(GC). The long-term performance in the co-electrolysis mode under a current density of $800mA/cm^2$ was obtained using steam and carbon dioxide ($CO_2$) mixed gas condition.

A Study on the Quality Characteristics of Feedstocks for Power Bio-Fuel Oil (발전용 바이오중유용 원료물질의 품질특성 연구)

  • Jang, Eun-Jung;Lee, Mi-Eun;Park, Jo-Yong;Min, Kyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.136-147
    • /
    • 2015
  • As it carry out RPS(Renewable Portfolio Standards), power producers are using the power bio-fuel oil to meet their RPS quota. In this study, we test the quality characteristics of raw materials for power bio-fuel oil and the property changes of power bio-fuel oil by the kind of feedstocks. The power bio-fuel oil and feedstocks were analyzed for item of quality standard such as acid number, viscosity and metal contents. And it was analyzed for composition distribution by FT-IT and HPLC. Such as low priced palm oil series has high acid number and ash contents due to high free-fatty acid and metal contents. And by-product of biodiesel have a tendency of high viscosity. The fuel properties of power bio-fuel oil, such as viscosity, acid number and metal contents are correlated with the constituent and the mixing ratio of the feedstocks.

Development of thermal conductivity model with use of a thermal resistance circuit for metallic UO2 microcell nuclear fuel pellets

  • Heung Soo Lee;Dong Seok Kim;Dong-Joo Kim;Jae Ho Yang;Ji-Hae Yoon;Ji Hwan Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3860-3865
    • /
    • 2023
  • A metallic microcell UO2 pellet has a microstructure where a metal wall is connected to overcome the low thermal conductivity of the UO2 fuel pellet. It has been verified that metallic microcell fuel pellets provide an impressive reduction of the fuel centerline temperature through a Halden irradiation test. However, it is difficult to predict the effective thermal conductivity of these pellets and researchers have had to rely on measurement and use of the finite element method. In this study, we designed a unit microcell model using a thermal resistance circuit to calculate the effective thermal conductivity on the basis of the microstructure characteristics by using the aspect ratio and compared the results with those of reported metallic UO2 microcell pellets. In particular, using the thermal conductivity calculated by our model, the fuel centerline temperature of Cr microcell pellets on the 5th day of the Halden irradiation test was predicted within 6% error from the measured value.

Development and Evaluation of Bipolar Plates Coated with Noble Metals for Polymer Electrolyte Membrane Fuel Cells (Noble Metal이 코팅된 금속분리판 개발 및 성능 평가)

  • Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Kim, Minsung;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The coated metallic bipolar plates are getting attractive due to their good feasibility of mass production, low contact resistance, high electrical/thermal conductivity, low gas permeability and good mechanical strength comparing with graphite materials. Yet, metallic bipolar plates for polymer electrolyte membrane(PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance between metallic bipolar plate and gas diffusion layer, good mechanical robustness, low mechanical and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrate by electroplating. The coated metallic bipolar plates are investigated with an electrochemical polarization tests, salt dipping tests, adhesion tests for corrosion resistance and then the contact resistance was measured. The results showed that the selective samples electroplated with optimized method, satisfied the DOE target for corrosion resistance and contact resistance, and also were very stabilized in the typical fuel cell environments in the long-term.

  • PDF