• Title/Summary/Keyword: Metal Fastening Method

Search Result 5, Processing Time 0.019 seconds

A Study on the Pulling Force Characteristic of the Reverse Screw for the Metal Fastening Method (Metal Fastening 공법을 위한 Reverse Screw의 견인력 특성에 관한 연구)

  • Kim, Tae-Hyung;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The metal fastening method is the new technology to repair cracks in the casting material using specially designed reverse screws. In this study, we conduct the finite element analysis to analyze the pulling force characteristic of a reverse screw, the core component of the metal fastening method, with respect to the change of the applying torque, frictional coefficient and front screw angle. The simplified analysis model with single screw pitch is proposed for convergency of the non-linear contact analysis. As a results, the pulling force of a reverse screw increase in proportion to the applying torque but exponentially decrease according to frictional coefficient. And also we can find the optimum front screw angle with the largest pulling force is $20^{\circ}$.

Seismic performance evaluations of modular house having 4-clip fastening method (4-클립 체결방식을 갖는 모듈러 하우스의 내진성능평가)

  • Lim, Hyeon-jin;Cho, Chang-Geun;Shin, Jung-Kang;Lee, Sun-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • The purpose of this study is to evaluate seismic performances of a modular house system developed by a simple 4-clip fastening method and double metal assembly made of lightweight metals. In order to evaluate structural and non-structural seismic performances of the system. Shaking table test was carried out with full-scale modular units, and a nonlinear pushover analysis was performed to obtain suitable seismic responses for story drifts, displacements, force resistances and dynamic properties of the system. Through 3D analysis and shaking table test, the current method of lightweight modular metal unit assembly and systems with seismic performance of a 4-clip fastening type modular house were demonstrated safe and effective to seismic design.

Development Process of Monocoque Frame for Hybrid Bicycle using Bolt Fastening (볼트체결을 이용한 하이브리드 자전거 모노코크 프레임 개발 프로세스)

  • Lee, In-Chul;Jang, Dong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.93-100
    • /
    • 2013
  • This paper presents the development process for a bicycle monocoque frame using bolt fastening. Traditionally, bicycle frames have been constructed with metal tubes joined at their ends by welding. These frames have been brazed or soldered onto metal lugs, forming the frame. Because stress loads become greatest at the joint of the bicycle tube frame, joint construction strongly influences frame design and construction. To avoid the inherent problems of material discontinuity at frame joints, numerous designers have attempted to reduce or eliminate the number of joints in tube frames. Nevertheless, the manufacture of high quality, reliable, one-piece and jointless frames has proven difficult and expensive. In this study, a new monocoque frame adapted to a hybrid bike is proposed. The advantage of the monocoque frame, is theat is has a rechargeable battery system that is built into the frame; as a result, the emotional quality for the customer is improved. In order to estimate the design compatibility compared with that of tube frames, structural analysis is performed using finite element method. A prototype based on a modified design has also been made and stability testing has been carried out.

Analysis of Microstructure and Mechanical Properties According to Heat Treatment Conditions in GMAW for Al 6061-T6 Alloy (Al 6061-T6 합금의 MIG 용접 후 열처리조건에 따른 미세조직 및 기계적 물성 분석)

  • Kim, Chan Kyu;Cho, Young Tae;Jung, Yoon Gyo;Kang, Shin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.34-39
    • /
    • 2016
  • Recently, aluminum alloy has used various industry, such as automobile, shipbuilding and aircraft because of characteristics of low density and high corrosion resistance. Al 6061-T6 is heat treatment materials so it has high strength and mostly used for assembly by mechanical fastening such as a bolting and riveting. In GMA (Gas Metal Arc) welding of alloy, some defects which are hot cracking, porosity, low-mechanical properties and large heat affected zone is generated, because of high heat conductivity. It reduces mechanical properties. In this study, the major factor effected on properties are analyzed after welding in Al 6061-T6 in GMAW, then optimize heat treatment conditions. Plate of Al 6061-T6 with a thickness of 12 mm is welded in V groove and applied welding method is butt joint. Mechanical properties and microstructure are analyzed according to heat treatment condition. Tensile strength, microstructure and Hardness are evaluated. Result of research appears that Al 6061-T6 applied heat treatment show outstanding mechanical properties.

An Experimental Study on the Static Load Capacity of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 정적내력에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Kyong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • The tension type joint is a mechanically very efficient connection method, as it directly uses the load capacity of base metal or high tension bolt, the reduction of the number of drilling hole and fastening and the fatigue resistance. It is applied to the joint of girder and cross beam, horizontal joints of towers, beam to column joints, the secondary member joints of deck floor ends, and brackets. In this paper, static load tests for the T-type tension joint were conducted to investigate the structural behavior of the joint. The parameters were bolt diameter, flange thickness, and the reduction of clamping force of the joint. The failure modes and load capacity of joints and the effects of flange thickness, bolt diameter and clamping force were investigated.