• Title/Summary/Keyword: Metal Bearing

Search Result 271, Processing Time 0.028 seconds

Verification on the Compressive Behavior of Corrugated Steel Plates due to Details of Bolted Lap Joint (압축하중을 받는 파형강판 연결부 상세에 따른 구조거동 분석)

  • Oh, Hong Seob;Nam, Ki Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2012
  • This study is dealt with the experimental seam strength of deep corrugated steel plate which is used as underpasses, storm sewers and other buried applications. The soil-metal structure using deep corrugated plate should be sufficient to ensure safety for compressive loading. The experimental and theoretical results on the seam strength are accumulated enough to take the design guideline, even if the seam strength at the bolt connected lap joint in construction site can be varied depending on the connection detailing and the thickness of plate. In this study, compressive behavior of bolted lap jointed plates using various connection detail such as gasket, slot hole, washer was experimentally analyzed. From the test, failure pattern with an increases in the thickness of specimens was changed from plate bearing to bolt shearing. In case of thicker plates than 6.0mm, the structural performance of lap joint using gasket and slot hole is more effective than it of the plate adopted washer.

Current Status of Ilmenite Beneficiation Technology for Production of TiO2 (TiO2 제조를 위한 일메나이트 처리기술 현황)

  • Sohn, Ho-Sang;Jung, Jae-Young
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.64-74
    • /
    • 2016
  • Titanium and iron are closely related in nature, although titanium is the ninth most abundant element in the Earth's crust. Iron in titanium ores must be removed for use as feedstocks in the manufacture of titanium dioxide pigments and pure $TiCl_4$ for metal titanium. In this study, various beneficiation processes of ilmenite for production of $TiO_2$ have been reviewed and compared. Most of these processes involve a combination of pyrometallurgy and hydrometallurgy. These beneficiation processes of ilmenite generate considerable quantities of wastes primarily in the form of iron salt, iron oxide and acidic effluents. Therefore, it is important that recovery of acid value from waste and conversion of iron bearing waste to useful materials for development of new beneficiation processes of ilmenite.

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

Anti-norovirus activity of natural compounds and its potential in food application (항노로바이러스 천연물을 이용한 식품개발)

  • Kim, Yeon-Ji;Lee, Jeong Su;Joo, In Sun;Lee, Sung-Joon
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • Control of food pathogens is critical in food safety field. Norovirus is one of the major causes of gastroenteritis and food poisoning worldwide, however, currently, there is not a vaccine or a specific drug available for its treatment. There are several methods to inactivate norovirus during food processing by chemical and physical treatments, however, the use of natural substance has been suggested as an optional strategy due to their safety and consumer preference. In this study supported by Ministry of Food and Drug Safety in Korea, we identified novel plant-derived substances with significant anti-norovirus activities. The aim of this project was to determine the antiviral activity of a wide range of natural substances, including plant-derived extracts and essential oils, using a norovirus surrogate system, human norovirus replicon-bearing cells, and mouse in vivo experiments. During the activity screening test, we identified novel anti-norovirus substances or oils using plaque assay with MNV-1. Six selected substances were formulated into an optimum mixture and used as an ingredient for salad sauce of which anti-novovirus activity was confirmed(pending for patent and paper submission). The potential application of selected natural substances as a metal surface sanitizer was also tested. Interestingly, the mixture of selected natural compounds showed a significant inhibitory effect against norovirus. These results suggest that these substances may be used as food ingredient with anti-norovirus antivity or components for surface sanitizers to prevent norovirus contamination.

Hydrothermal Antimony Deposits of the Hyundong Mine : Geochemical Study (현동 광산의 열수 안티모니 광화작용 : 지화학적 연구)

  • Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.435-444
    • /
    • 1999
  • The antimony deposits of the Hyundong mine, located in the northeastern part of the Sobaegsan massif, occur as hydrothermal quartz+carbonate veins and stockworks which fill the fault fractures developed in Precambrian metamOlphic rocks (mainly, granitic gneiss). Hydrothermal alteration occurs commonly in the vicinity of mineralized veins and is characterized by sericitization and silicification. A K-Ar age of alteration sericite is 139.2$\pm$ 4.4 Ma, implying the early Cretaceous age of mineralization, possibly in association with intrusion of nearby acidic dikes (mainly, quartz porphyry). The hydrothermal mineralization occurred in five mineralization stages. These are: (I) stage I, characterized by deposition of chalcedonic quartz; (2) stage II, deposition of quartz with base-metal sulfides and stibnite; (3) stage III, deposition of quartz and carbonates (calcite, dolomite, ankerite, rhodochrosite) with various antimony-bearing minerals such as stibnite, polybasite, berthierite, native antimony, gudmundite and ullmannite; (4) stage IV, deposition of calcite with stibnite; and (5) stage V, deposition of barren calcite. Antimony occurs mostly as stibnite within stages II to IV veins, which has various habits including disseminated, veinlets and euhedral coarse crystals. Fluid inclusion studies indicate that hydrothermal mineralization at Hyundong occurred from the fluids with temperature and salinity of $330^{\circ}$C to 120 and 5.3 wI. % equiv. NaCI. The temperature and salinity of ore fluids systematically decreased with elapsed time in the course of mineralization, possibly due to the influx of larger amounts of meteoric groundwater. The deposition of antimony-bearing minerals occurred at low temperatures «$250^{\circ}$C), mainly due to the cooling and dilution of fluids. Based on the evidence of fluid boiling during the early stage II mineralization, the mineralization occurred under low pressure conditions (about 80 bars, corresponding to depths of about 350 m under hydrostatic pressure regime). Thermodynamic considerations of ore . mineral assemblages indicate that antimony deposition also occurred as the results of decreases in temperature and sulfur fugacity of hydrothermal fluids. Calculated sulfur isotope composition of ore fluids ($\delta^{34}S_{\Sigma s}$=5.4 to 7.8$\textperthousand$) indicates an igneous source of sulfur.

  • PDF

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

Structural and Compositional Characteristics of Skarn Zinc-Lead Deposits in the Yeonhwa-Ulchin Mining District, Southeastern Taebaegsan Region, Korea Part II : The Yeonhwa II Mine (연화(蓮花)-울진광산지대(蔚珍鑛山地帶) 스카른연(鉛)·아연광상(亞鉛鑛床)의 구조적(構造的) 및 성분적(成分的) 특징(特徵) 기이(其二) : 제2연화광산(第二蓮花鑛山))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.12 no.3
    • /
    • pp.147-176
    • /
    • 1979
  • The Yeonhwa II zinc-lead mine is characterized by a dozen of moderately dipping tabular orebodies of skarn and zinc-lead sulfides, developed in accordance with the ENE-trending bedding thrusts and bedding planes of the Pungchon Limestone and underlying Myobong Formation, mostly along the contacts of a ENE-trending sill and a NW-trending dike of quartz mononite porphyry. The orebodies occur in three groups: (1) the footwall Wolgok orebodies with respect to the sill, (2) the hangingwall Wolgok orebodies, and (3) the Seongok orebodies extended from dike contacts into carbonate beds. Mineral compositions of these orebodies are dominated by calc-silicates (skarn) associated with ore minerals of sphalerite, galena, and chalcopyrite, as well as sulfide gangue of pyrrhotite. A pair of exo- and endo-skerns in the Wolgok footwall contact aureole between the Pungchon Limestone and quartz monzonite porphyry on the -120 level represents a well-developed symmetrical pattern of mineral zoning: a garnet/quartz zone in the center of exoskarn, two zones of pyroxene with ore minerals on both sides of the garnet/quartz zone, further outwards-an epidote/chlorite-bearing hornfelsic zone in the Myobong slate beyond a zone of unaffected limestone, and an epidote-dominated zone of endo skarn on the opposite side toward fresh quartz monzonite porphyry. These features indicate a combination of two effects on the skarn formation: (1) differences in composition of the host rocks(sedimentary and ignous), and (2) progressive outward migration of inner zones on outer zones on the course of metasomatic replacement of the pre-existing minerals. Microprobe analyses of garnet, pyroxene, pyroxenoids, epidote, and chlorite for nine major elements on a total of 23 mineral grains revealed that: the pyroxenes are hedenbergitic, in most zones, with a gradual decrease of Fe- and Mn-contents toward the central zone, whereas the garnets are andraditic in outer zones, but are grossularitic in the central zone. This indicates a reverse relationship of Fe-contents between pyroxene and garnet across the exoskarn zones. Pyroxenoids are lacking in wollastonite but are dominated by pyroxmangite, rhodonite and bustamite, indicating a Mn-rich nature in bulk chemistry. Pseudomorphic fluorite after garnet occurs abundantly reflecting a fluorine-enhanced evidence of the skarn-forming fluids. Epidote contains 0.19-0.25mole fraction of pistacite, and chlorite is Mn-rich but is Mg-poor. Sulfide mineralization took place with the most Fe-rich pyroxene rather than with garnet as indicated by the fact that the highest value of hedenbergite mole fraction occurs in the ore-bearing pyroxene zone. The Yeonhwa II ores are characterized by high zinc and low lead in metal grade, with minor quantity of copper content in almost constant grade. The hangingwall Wolgok and Seongok orebodies, that formed in a more open environment with respect to their local configurations of geologic setting, are more variable in metal grades and ratios, than are the footwall Wolgok orebodies formed in a more closed condition in a narrow interval of sedimentary beds.

  • PDF

Performance Experiments and Analysis of Nonlinear Behavior for HDRB using in Seismic Isolation (면진용 고감쇠 적층고무베어링의 성능 특성 실험 및 비선형 거동해석)

  • Koo, Gyeong-Hoi;Lee, Jae-Han;Yoo, Bong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.73-86
    • /
    • 1998
  • The purpose of this paper is to evaluate the shear stiffness, hysteretic behavior, and ultimate behavior of HDRB(High Damping Rubber Bearing), which will be included in the seismic isolation design guideline as requirements. To do this, two 1/8 scaled HDRB are designed, fabricated, and tested to show the mechanical characteristics. The shear stiffness obtained from the proposed equation of the shear stiffness shows a good agreement with those of the experiments. For analysis of the hysteretic behavior of HDRB using the modified rate model, the parameter equations are obtained from the experiments. Using the obtained parameter equations for the modified rate model, the seismic response analyses are carried out for 1-D system. The results of analysis well follow the hysteretic behavior of HDRB obtained from the experiments. To evaluate the ultimate behavior of HDRB used in this paper, the analyses are carried out using the modified macro model, which can consider the large shear deflection. The critical shear strain(CSS) is defined to express the maximum allowable shear strain and vertical load. From the analyses, the CSS, showing the instability, decreases significantly as increased the vertical loads. The CSS is not appeared for the design vertical load in the used HDRB. In analysis using about 5 times of design vertical load, the HDRB start to show the instability transient and for about 7 times, the CSS is about 350%.

  • PDF

Gold and Silver Mineralization of the Soowang Ore Deposits in Muju, Korea (무주 수왕광상의 금-은 광화작용)

  • Park, Hee-In;Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.484-494
    • /
    • 2004
  • The Soowang Au-Ag deposits occur as quartz veins which filled fissures in middle Cretaceous porphyritic granite an/or gneiss of the Precambrian Sobaegsan gneiss complex. The paragenetic studies suggest that vein filling can be divided into four identifiable stages (I to IV). Stage I is the main sulfide stage, characterized by the deposition of base-metal sulfide and minor electrum. Stage II is the electrum stage, whereas stage III represents a period of the deposition of silver-bearing sulfosalts and minor electrum. Stage IV is the post ore stage. Mineralogical and fluid inclusion evidences suggest that mineralization of the Soowang deposits were deposited by the cooling of the fluids from initial high temperatures 300$^{\circ}C$ to later low temperatures 150$^{\circ}C$. The salinity of the fluids were moderate, ranging from 10.4wt.% equivalent NaCl in sphalerite to 3.1wt.% equivalent NaCl in barite. The gold-silver mineralization of the Soowang mine occurred at temperatures between 140 and 250$^{\circ}C$ from fluids with log $fs_2$ from -12 to -18 atm. A consideration of the pressure regime during ore deposition, based on the fluid inclusion evidence of boiling, suggests lithostatic pressure of less than 210 bars. This pressure condition indicates that vein system of the Soowang deposit formed at depth around 800 m below the surface at the time of gold-silver mineralization.