• 제목/요약/키워드: Metal 3D printing process

검색결과 56건 처리시간 0.026초

금속 3D 프린팅 적층제조(AM) 공정 시뮬레이션 기술에 관한 고찰(I) (Investigation to Metal 3D Printing Additive Manufacturing (AM) Process Simulation Technology (I))

  • 김용석;최성웅;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.42-50
    • /
    • 2019
  • 3D printing AM processes have advantages in complex shapes, customized fabrication and prototype development stage. However, due to various parameters based on both the machine and the material, the AM process can produce finished output after several trials and errors in the initial stage. As such, minimizing or optimizing negative factors for various parameters of the 3D printing AM process could be a solution to reduce the trial-and-error failures in the early stages of such an AM process. In addition, this can be largely solved through software simulation in the preprocessing process of 3D printing AM process. Therefore, the objective of this study was to investigate a simulation technology for the AM software, especially Ansys Inc. The metal 3D printing AM process, the AM process simulation software, and the AM process simulation processor were examined. Through this study, it will be helpful to understand 3D printing AM process and AM process simulation processor.

금속 적층 기반 하이브리드 머시닝센터의 경량화를 위한 형상 최적화에 관한 연구 (Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center)

  • 정원용;정호인;이춘만
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.80-85
    • /
    • 2021
  • In the fourth industrial revolution, the demand for metal three-dimensional (3D) printing technology is rapidly increasing. Metal 3D printing is an efficient method for manufacturing products because the method reduces material waste compared to subtractive manufacturing. In addition, products with complex shapes, such as turbine blades, can be easily produced using metal 3D printing because the method offers a high degree of freedom. However, due to the long production time of metal 3D printing, mass production is impossible, and post-processing is necessary due to its low precision. Therefore, it is necessary to develop a new hybrid process that can efficiently process metals and to develop a metal 3D-printing-based hybrid processing system technology to secure high processing precision and manufacture complex shapes. In this study, the structural stability of a metal 3D printer based hybrid machining center was analyzed through structural analysis before its development. In addition, we proposed a design modification that can reduce the weight and increase the stiffness of the hybrid machining center by performing shape lightning based on the structural analysis results.

구리 와이어-나일론 복합소재 필라멘트를 이용한 적층제조 공정에 관한 연구 (A Study on the Additive Manufacturing Process using Copper Wire-Nylon Composite Filaments)

  • 김예진;김석;조영태
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.1-8
    • /
    • 2022
  • Fused deposition modeling (FDM), based on stacking a continuous filament of polymer or composite materials, is well matured and is thus widely used in additive manufacturing technology. To advance FDM-based 3D printing technology, the mechanical properties of additively manufactured composite materials must be improved. In this study, we proposed a novel FDM 3D printing process using metal wire-polymer composites, enabling enhanced mechanical properties. In addition, we developed a new type FDM filament of copper wire wrapped in nylon material for stable 3D printing without thermal damage during the printing process. After FDM printing of the copper wire-nylon composite filament, we conducted a tensile test to investigate the mechanical behavior of the printed composite materials. The experimental results confirmed that the tensile strength of the 3D-printed metal wire-polymer composites was higher than that of the conventional single polymer material. Thus, we expect that the FDM printing process developed in this study may be promising for high-load-bearing applications.

금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가 (Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing)

  • 이성윤;이인규;정명식;이재욱;이선봉;이상곤
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.

3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석 (A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface)

  • 안동규;김세훈;이호진
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.

FDM 3D Printing 기술을 응용한 직접식 세라믹 쾌속툴링 (Ceramic Direct Rapid Tooling with FDM 3D Printing Technology)

  • 신근식;권현규;강용구;오원택
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.83-89
    • /
    • 2019
  • In the conventional casting and forging method, there is a disadvantage that a mold is an essential addition, and a production cost is increased when a small quantity is produced. In order to overcome this disadvantage, a metal 3D printing production method capable of directly forming a shape without a mold frame is mainly used. In particular, overseas research has been conducted on various materials, one of which is a metal printer. Similarly, domestic companies are also concentrating on the metal printer market. However, In this case of the conventional metal 3D printing method, it is difficult to meet the needs of the industry because of the high cost of materials, equipment and maintenance for product strength and production. To compensate for these weaknesses, printers have been developed that can be manufactured using sand mold, but they are not accessible to the printer company and are expensive to machine. Therefore, it is necessary to supply three-dimensional casting printers capable of metal molding by producing molds instead of conventional metal 3D printing methods. In this study, we intend to reduce the unit price by replacing the printing method used in the sand casting printer with the FDM method. In addition, Ag paste is used to design the output conditions and enable ceramic printing.

금속 3D 프린팅 시스템 구축을 위한 2 kW 급 레이저헤드 광학설계 (Optical Design of a 2-kW-Level Laser Head for Metal 3D-Printing Systems)

  • 이주형
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.90-94
    • /
    • 2022
  • Metal 3D-printing technology enables the manufacture of complex features or internal structures, which is not possible in fabrication by conventional cutting methods. The most successful types of metal 3D printing have been powder bed diffusion and directed energy deposition, which use laser heads exploiting high-power laser sintering metal powder. In this study, a cost-effective optical design was proposed for a 2-kW-level fiber laser head. Only two commercial lenses, a beamsplitter and a window, are used in the laser head, satisfying the technological requirements. According to the optical design, the spot size was 2.54 mm, and the stand-off distance from the laser head was 295 mm. The intensity distribution was Gaussian. Thus, smooth power sintering was possible without any laser spot marks. Monte Carlo analysis was employed to verify the consistency of the optical performance under conventional assembly tolerance.

3차원 금속 프린팅 공정에서의 조형파트 진단 및 조형공구경로 검증 (Verification of Build Part and Tool Paths for Metal 3-D Printing Process)

  • 이규복;지해성
    • 대한기계학회논문집A
    • /
    • 제41권2호
    • /
    • pp.103-109
    • /
    • 2017
  • AMM(Additive Metal Manufacturing)이라 호칭되는 3차원 금속 프린팅(metal 3-D printing) 공정은 금속분말(metal powder)을 적층 재료로 사용하여 기계적부품용 실형상 금속 파트(metallic parts)를 직접 조형하여 제조한다. 한편, 조형 파트형상의 STL모델에 존재하는 기하학적 오류들과 특징형상들의 특이성으로 인하여 조형 작업 중에 내부에 결함들이 포함된 실형상 파트가 조형될 가능성이 존재하게 되며 이로 인해 3차원 금속 프린팅 조형공정 자체의 신뢰성에 문제를 야기할 수 있다. 본 논문에서는 이러한 조형작업 중 발생할 수 있는 결함들을 미리 진단, 분석하고 수정하기 위하여 첫째, 조형 전에 STL 형상모델의 진단분석을 통하여 결함요소를 사전에 탐지하고 둘째, 적층 단면내 조형 공구 경로상에 실제로 포함된 결함들을 분석하고 이를 수정하기 위한 조형 파트 진단 및 조형 공구 경로 검증 연구방법을 제시하였다. 또한 DED(direct energy deposition) 공정을 기준으로 2가지 STL 형상파트 사례들에 대하여 제시한 연구방법의 case study를 수행하였다.

3D 프린팅으로 제조한 알루미늄 합금의 크로메이트 코팅 (Chromate Conversion Coating on 3D Printed Aluminum Alloys)

  • 신홍식;김효태;김기승;최혜윤
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.109-115
    • /
    • 2022
  • The demand for metal 3D printing technology is increasing in various industries. The materials commonly used for metal 3D printing include aluminum alloys, titanium alloys, and stainless steel. In particular, for applications in the aviation and defense industry, aluminum alloy 3D printing parts are being produced. To improve the corrosion resistance in the 3D printed aluminum alloy outputs, a post-treatment process, such as chromate coating, should be applied. However, powdered materials, such as AlSi7Mg and AlSi10Mg, used for 3D printing, have a high silicon content; therefore, a suitable pretreatment is required for chromate coating. In the desmut step of the pretreatment process, the chromate coating can be formed only when a smut composed of silicon compounds or oxides is effectively removed. In this study, suitable desmut solutions for 3D printed AlSi7Mg and AlSi10Mg materials with high silicon contents were presented, and the chromate coating properties were studied accordingly. The smut removal effect was confirmed using an aqueous desmut solution composed of sulfuric, nitric, and hydrofluoric acids. Thus, a chromate coating was successfully formed. The surfaces of the aluminum alloys after desmut and chromate coating were analyzed using SEM and EDS.

패션분야의 3D 프린팅 활용 현황에 관한 연구 (Study on Status of Utilizing 3D Printing in Fashion Field)

  • 김효숙;강인애
    • 한국의상디자인학회지
    • /
    • 제17권2호
    • /
    • pp.125-143
    • /
    • 2015
  • This study has investigated the status of utilizing 3D printing in fashion field in order to keep up with the trend for 3D printing technology to be realized in all industries so that the materials and the modeling modes may be figured out. The following is the findings. The materials used most in 3D printing in fashion field are PA, PLA, TPU, multi-material, ABS and metal. PA, TPU and Multi-material have so much excellent flexibility and strength that they are widely used for garment, shoes and such fashion items as bags. But PLA, ABS and metal are scarcely used for garment because PLA is easily biodegradable in the air, ABS generates harmful gas in the process of manufacture and metal is not flexible, while all of these three are partly used for shoes and accessories. The modeling modes mainly applied for 3D printing in fashion field are SLS, SLA, FDM and Polyjet. SLS, which is of a powder-spraying method, is used for making 3D textile seen just like knitting. Polyjet method, which has higher accuracy and excellent flexibility, can be used for expressing diverse colors, and accordingly it is used a lot for high-quality garment, while SLA and FDM method are found to be mostly used for manufacturing shoes and accessories rather than for making garment because they are easily shrunk to result in deformation.

  • PDF