• Title/Summary/Keyword: Metal/Intermetallic

Search Result 135, Processing Time 0.018 seconds

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

A Study on the Recycling Process of Nickel Recovery from Inconel 713C Scrap based on Hydrometallurgy (인코넬 713C 스크랩으로부터 니켈 자원 회수를 위한 습식제련 기반 재활용공정 연구)

  • Min-seuk Kim;Rina Kim;Kyeong-woo Chung;Jong-Gwan Ahn
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.36-46
    • /
    • 2024
  • We investigated a hydrometallurgical process of nickel recovery from Inconel 713C scrap. The process proceeded with a series of i) comminution of pyrometallurgical treated scrap, ii) sulfuric acid leaching, iii) solvent extraction of unreacted acid, molybdenum, aluminum, and precipitation of chromium, iv) crystallization of nickel sulfate by vacuum evaporation, and v) nickel electrowinning. The nickel-aluminum intermetallic compound, Ni2Al3, was formed by the pyrometallurgical pretreatment readily grounded under 75 ㎛. Sulfuric acid leaching was done for 2 hours in 2 mol/L, 20 g/L solid/liquid ratio, and 80 ℃. It revealed that over 98 % of nickel and aluminum was dissolved, whereas 28 % of molybdenum was. A nickel sulfate solution with 2.34 g/L for the crystallization of nickel sulfate hydrate was prepared via solvent extraction and precipitation. Over 99 % of molybdenum and aluminum and 93 % of chromium was removed. Nickel metal with 99.9 % purity was obtained by electrowinning with the nickel sulfate monohydrate in the cell equipped with anion exchange membranes for catholyte pH control. The membrane did not work well, resulting in a low current efficiency of 73.3 %.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Soft X-ray Synchrotron-Radiation Spectroscopy Study of [Co/Pd] Multilayers as a Function of the Pd Sublayer Thickness (Pd층의 두께 변화에 따른 [Co/Pd] 다층박막의 연엑스선 방사광 분광 연구)

  • Kim, D.H.;Lee, Eunsook;Kim, Hyun Woo;Seong, Seungho;Kang, J.-S.;Yang, Seung-Mo;Park, Hae-Soo;Hong, JinPyo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.124-128
    • /
    • 2016
  • We have investigated the electronic structures of intermetallic multilayer (ML) films of [$Co(2{\AA})/Pd(x{\AA})$] (x: the thickness of the Pd sublayer; x = $1{\AA}$, $3{\AA}$, $5{\AA}$, $7{\AA}$, $9{\AA}$) by employing soft X-ray absorption spectroscopy (XAS) and soft X-ray magnetic circular dichroism (XMCD). Both Co 2p XAS and XMCD spectra are found to be similar to one another, as well as to those of Co metal, providing evidence for the metallic bonding of Co ions in [Co/Pd] ML films. By analyzing the measured Co 2p XMCD spectra, we have determined the orbital magnetic moments and the spin magnetic moments of Co ions in [$Co(2{\AA})/Pd(x{\AA})$] ML films. Based on this analysis, we have found that the orbital magnetic moments are enhanced greatly when x increases from $1{\AA}$ to $3{\AA}$, and then do not change much for $x{\geq}3{\AA}$. This finding suggests that the interface spin-orbit coupling plays an important role in determining the perpendicular magnetic anisotropy in [Co/Pd] ML films.

Development of Liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth (수지상 우라늄 성장억제를 위한 액체카드뮴 음극구조 개발)

  • Paek, Seung-Woo;Yoon, Dal-Seong;Kim, Si-Hyung;Shim, Jun-Bo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • The LCC (Liquid Cadmium Cathode) structure to be developed for inhibiting the formation and growth of the uranium dendrite has been known as a key part in the electrowinning process for the simultaneous recovering of uranium and TRU (TRans Uranium) elements from spent fuels. A zinc-gallium (Zn-Ga) experimental system which is able to be functional in aqueous condition and normal temperature has been set up to observe the formation and growth phenomena of the metal dendrites on liquid cathode. The growth of the zinc dendrites on the gallium cathode and the performance of the existing stirrer type and pounder type cathode structure were observed. Although the mechanical strength of the dendrites appeared to be weak in the electrolyte and easily crashed by the various cathode structures, it was difficult to effectively submerge the dendrite into the bottom of the liquid cathode. Based on the results of the aqueous phase experiments, a lab-scale electrowinning experimental apparatus which are applicable to the development of LCC srtucture for the electrowinning process was established and the performance tests of the different types of LCC structure were conducted to prohibit the uranium dendrite growth on LCC surface. The experimental results of the stirrer type LCC structures have shown that they could not effectively remove the uranium dendrites growing at the inner side of the LCC crucible and the performances of the paddle and harrow type LCC structure were similar. Therefore a mesh type LCC structure was developed to push down the uranium dendrites to the bottom of the LCC crucible growing on the LCC surface and at the inner side of the crucible. From the experimental results for the performance test of the mesh type LCC structure, the uranium was recovered over 5 wt% in cadmium without the growth of uranium dendrites. After completion of the experiments, solid precipitates of the bottom of the LCC crucible were identified as an intermetallic compound (UCd11) by the chemical analysis.