• Title/Summary/Keyword: Metacentric height

Search Result 20, Processing Time 0.024 seconds

A Study on the Speed Effects of Afterbody Appendage for the Container Carrier (컨테이너 운반선의 선미부가물에 의한 속도성능 향상에 대한 연구)

  • Lim, Chae-Seong;Park, Dong-Woo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.32-42
    • /
    • 2007
  • Container vessels are required to have a large KMT to load many containers which requires a wide transom stern form. The wide transom stern generates large stern waves particularly at the scantling draft. This means that reducing the stern wave leads to resistance reduction. Numerical analyses and Model tests for duck-tail of the stern part have been performed to reduce the resistance of the container vessel having the wide transom on the scantling draft and optimize the form of duck-tail with the change of the design parameter i.e. length and edge height. The optimized duck-tail increases the speed by 0.8 % at scantling draft.

  • PDF

Study on Numerical Sensitivity and Uncertainty in the Analysis of Parametric Roll (파라메트릭 횡동요 수치해석의 민감도 및 불확실성에 대한 연구)

  • Park, Dong-Min;Kim, Tae-Young;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.60-67
    • /
    • 2012
  • This study considers the numerical analysis on parametric roll for container ships. As a method of numerical simulation, an impulse-response-function approach is applied in time domain. A systematic study is carried out for the parametric roll of two container ships, particularly observing the sensitivity of computational results to some parameters which can affect the analysis of parametric roll. The parameters to be considered are metacentric height (GM), simulation time window, and the discretization of wave spectrum. Based on the result of parametric roll simulation, numerical sensitivity and uncertainty in computational analysis are discussed.

Evaluation of Stability and Roll Damping Effect according to Change the Hull Form of Fishing Boat (선형변화에 따른 낚시보트의 횡요저감효과 및 복원성 평가)

  • Jeong, Jae-Hun;Lee, Sung-Jong;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.5-9
    • /
    • 2013
  • The aim of present study is to evaluate the stability of GM(Metacentric Height) calculation and investigate the damping effect of free rolling test. Moreover, GZ(Righting arm in stability) curve shows that it can provide reasonable design conditions for Fish boat. The roll damping characteristics of the improved model for an 7.9 ton class fishing boat are investigated through the free roll test in towing tank. The safety and boarding sensitivity are evaluated by GM calculation and roll motion period. Therefore, the results in this paper describe that the effect for improved hull is more improved than the original hull.

A Study on the Initial Stability Evaluation of 4.99-Tons-Class Standard Fishing Vessels (4.99톤급 표준어선형 어선의 초기 복원성 평가에 관한 연구)

  • Hwewoo Kim;Sanghyun Kim;Sunwoo Lee;Hyeongseok Yoon;Hyogeun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.176-183
    • /
    • 2024
  • Assessing the stability of small fishing vessels is important to prevent capsize accidents in coastal waters that primarily occur on small fishing vessels. However, the regulations regarding stability assessment for small vessels under 24 m are inadequate according to the domestic Fisheries Act. Based on safety standards issued by the Ministry of Oceans and Fisheries in 2022 to enhance safety and welfare, vessels adhering to the enhanced safety standards for standard ship types are required to establish stability regardless of their length. This study aims to utilize these aforementioned standards to assess the stability of vessels under 24 m, investigating the suitability of applying these criteria to these vessels and examining the impact on various small vessels with different superstructures. Initially, a 4.99-ton fishing vessel designed according to the standard ship type was selected as the subject vessel. Compliance with the standards was evaluated based on the initial stability of the vessel using the transverse metacentric height (GM) and transverse restoring moment arm at the limit angle (GZα). Additionally, six types of small vessels with identical hull forms and specifications to the subject vessel were further examined using prevalent superstructure designs in small fishing vessels. The stability of the subject small vessel was also assessed. A study of a 4.99-ton standard fishing vessel confirmed that the safety standards for standard fishing vessels with enhanced safety welfare were applicable to small fishing vessels under 4.99-ton class and that the stability of small fishing vessels with superstructure modifications was not significantly changed.

Roll reduction characteristics of the offshore large purseiner in Korea (한국 근해 대형 선망 어선의 횡동요 감쇠 특성)

  • Kang, Il-Kwon;Kim, Hyung-Seok;Jo, Hyo-Jae;Kim, Jung-Chang;Ham, Sang-Jun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.248-256
    • /
    • 2011
  • The inherent efficiency of a ship would be prior to any other quality factors in ship's safety, because lack of it may give rise to a serious sea casuality even if it were a light mistake in operation. And the representative casualty comes from a deficiency of stability and an operating error combined would be capsizing. The Korean offshore large purseiner looks to have a structural weak point with small range of stability in spite of her big initial metacentric height, and have various type of roll reduction devices in order to cover up the defect. The aim of this study is to grasp for the roll reduction characteristics of the purseiner with bilge keel only and a stern keel additionally attached. The results are summarized as follows; The rolling angle of the model ship was increased in accordance with increase of the wave period and height, especially at close to the natural wave period of her, and the trends were more distinguished in the situation of bilge keel only installation than in the stern keel additionally installed. And stern keel has not noticeable effect on the reduction of the roll in the light ship condition, but has a little effect in full load condition.

Numerical study on the resonance response of spar-type floating platform in 2-D surface wave

  • Choi, Eung-Young;Cho, Jin-Rae;Jeong, Weui-Bong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • This paper is concerned with the numerical study on the resonance response of a rigid spar-type floating platform in coupled heave and pitch motion. Spar-type floating platforms, widely used for supporting the offshore structures, offer an economic advantage but those exhibit the dynamically high sensitivity to external excitations due to their shape at the same time. Hence, the investigation of their dynamic responses, particularly at resonance, is prerequisite for the design of spar-type floating platforms which secure the dynamic stability. Spar-type floating platform in 2-D surface wave is assumed to be a rigid body having 2-DOFs, and its coupled dynamic equations are analytically derived using the geometric and kinematic relations. The motion-variance of the metacentric height and the moment of inertia of floating platform are taken into consideration, and the hydrodynamic interaction between the wave and platform motions is reflected into the hydrodynamic force and moment and the frequency-dependent added masses. The coupled nonlinear equations governing the heave and pitch motions are solved by the RK4 method, and the frequency responses are obtained by the digital Fourier transform. Through the numerical experiments to the wave frequency, the resonance responses and the coupling in resonance between heave and pitch motions are investigated in time and frequency domains.

A Semi-Analytic Approach for Analysis of Parametric Roll (준해석적 방법을 통한 파라메트릭 횡동요 해석)

  • Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.187-197
    • /
    • 2015
  • This study aims the development of a semi-analytic method for the parametric roll of large containerships advancing in longitudinal waves. A 1.5 Degree-of-Freedom(DOF) model is proposed to account the change of transverse stability induced by wave elevations and vertical motions (heave and pitch). By approximating the nonlinearity of restoring moment at large heel angles, the magnitude of roll amplitude is predicted as well as susceptibility check for parametric roll occurrence. In order to increase the accuracy of the prediction, the relationship between righting arm(GZ) and metacentric height(GM) is examined in the presence of incident waves, and then a new formula is proposed. Based on the linear approximation of the mean and first harmonic component of GM, the equation of parametric roll in irregular wave excitations is introduced, and the computational results of the proposed model are validated by comparing those of weakly nonlinear simulation based on an impulse-response-function method combined with strip theory. The present semi-analytic doesn’ t require heavy computational effort, so that it is very efficient particularly when numerous sea conditions for the analysis of parametric roll should be considered.

Study on Pure Roll Test of a Ship Using CFD Simulation (CFD 해석을 활용한 선박의 순수 횡동요 시험 연구)

  • Thi Loan, Mai;Anh Khoa, Vo;Hyeon Kyu, Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.338-344
    • /
    • 2022
  • Roll moment usually is ignored when analyzing the maneuverability of surface ships. However, it is well known that the influence of roll moment on maneuverability is significant for ships with small metacentric height such as container ships, passenger ships, etc. In this study, a pure roll test is performed to determine the hydrodynamic derivatives with respect to roll motion as added mass and damping. The target ship is an autonomous surface ship designed to carry containers with a small drift and large freeboard. The commercial code of STAR CCM+ software is applied as a specialized tool in naval hydrodynamic based on RANS equation for simulating the pure roll of the ship. The numerical uncertainty analysis is conducted to verify the numerical accuracy. By distinguishing the in-phase and out-of-phase from hydrodynamic forces and moments due to roll motion, added mass derivatives and damping derivatives relative to roll angular velocity are obtained.

An analytic study on the hull characteristics of ship accidents at low capsizing speeds (저속으로 전복되는 선박사고의 선체 특성에 대한 해석적 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.235-239
    • /
    • 2016
  • The capsizing speed of an unstable vessel with a lost restoring moment can be understood as a unique response to an accident situation, and is naturally affected by such parameters as moment of inertia, metacentric height, and transverse damping coefficient of the hull in the case of free roll motion. Additionally, it is supposed that the analysis of capsize accidents can be further simplified when a vessel's leaning velocity is shown to be quite low. Therefore, capsize accidents with low leaning speeds are desirably categorized in view of rescuing strategies, as opposed to fast capsize accidents, since the attitude of the declining hull can be properly estimated, which allows rescuers to have more time for helping accident cases. This study focuses on deriving some analytical equations based on the roll decay ratio parameter, which describes how a hull under a low-speed capsize is related to the situational hull characteristics. The suggested equations are applied to a particular ship to disclose the analytical responses from the model ship. It was confirmed that the results show the general characteristics of slow capsizing ships.

Study on the Stability Estimation Method of Small Fishing Vessels at the Initial Design Step (초기설계 단계에서 소형 어선의 복원성 추정 방안에 관한 연구)

  • Hwe-Woo Kim;Sanghyun Kim;Sun-Woo Lee;Hyogeun Lee;In-Tae Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.863-870
    • /
    • 2023
  • Ship capsize accidents are common in coastal waters, particularly involving small fishing boats. To prevent there overturing accidents in small fishing boats, their stabilities must be assessed at the initial design step. However, the available information during the initial design step is limited, posing challenges in performing a reliable stability evaluation. Therefore, this study presents a plan to estimate the transverse metacenter (GM) of small fishing boats using parameters such as KM, KG, and TRIM that can be determined at the initial design step. Stability was evaluated by comparing GM with the minimum transverse metacenter (GMmin) specified in the standard safety evaluation criteria for fishing boats. To calculate the required trim value for hydrostatic characteristics using K-SHIP, a stability assessment program provided by the Korea Maritime Safety and Transportation Corporation, the initial trim state is estimated based on the ship lines using the commercial CFD program STAR-CCM+. GM is then calculated by assessing the hydrostatic characteristics in relation to the boat lines using K-SHIP. Furthermore, the stability of the fully loaded state is compared by subtrcating GM from GMmin. One constructed ship is designated as the standard ship, and the stability assessment method proposed in this study is applied to evaluate stability and validate its effectiveness. Consequently, the representative line of a 4.99-ton fishing boat and nine modular lines models derived from it were evaluated, ultimately identifying a relatively superior stability.