• Title/Summary/Keyword: Metabolism Induction

Search Result 234, Processing Time 0.028 seconds

Effects of Ginseng on the Drug Metabolizing Enzymes (인삼이 간의 약물 대사 효소에 미치는 영향)

  • 김낙두
    • YAKHAK HOEJI
    • /
    • v.28 no.1
    • /
    • pp.29-33
    • /
    • 1984
  • The paper aimed to review the influences of ginseng on the metabolism of foreign substances and on the activity of hepatic drug metabolizing enzyme system in mouse or rat liver. It has been known that ginseng components reduces the motality rates and the toxic effects induced by foreign materials. Chronic pretreatment of mouse or rat with ginseng extract fractions or saponin caused the increase in the metabolism of foreign materials and the activity of drug metabolizing enzymes, such as cytochrome $P_{450}$, NADPH cytochrome C reductase and glucuronyl S-transferase in liver. Thus, it may be concluded that decrease in toxic effect of foreign substances by ginseng pretreatment may be partly related to the induction of drug metabolizing enzymes in liver.

  • PDF

1, 25(OH)$_2$-23ene-$D_3$ : Effects on Proliferation and Differentiation of U937 Cells in vitro and on Clcium Metabolism of Rat in vivo (1, 25(OH)$_2$-23ene-$D_3$ : in vitro에서 U937 세포의 증식과 분화 및 in vivo에서 쥐의 칼슘대사에 미치는 영향)

  • 정수자;서명자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1995
  • 1, 25(OH)2-23ene-D3 is a novel vitamine D3 analog which has a double bond between C-23 and C-24. We describe the effects of this analog on cell differentiation and cell proliferation in vitro using the human histiocytic lymphoma cell line U937, and on calcium metabolism in rats in vivo. In the present investigation 1, 25(OH)2-23ene-D3 was compared to the natural metabolite of vitamin D3, 1$\alpha$, 25-dihydroxycholecalciferol[1, 25(OH)2-23ene-D3 was more potent than 1, 25(OH)2-23ene-D3 for inhibition of proliferation and induction of differentiation of U937 cells. Especially, its effect on induction of differentiation, as measured by superoxide production and nonspecific esterase(NSE) activity, was about 20-fold more potent that 1, 25(OH)2-23ene-D3. This analog morphologically and functionally differentiated U937 cells to monocyte-macrophage phenotype showing a decrease of N/C ratio in Giemsa staining and the increase of adherence ability to surface. Intraperitoneal administration of 1, 25(OH)2-23ene-D3 to rats showed that the compound had at least 50 times less activity than 1, 25(OH)2-23ene-D3 in causing hypercalcemia and hypercalciuria. The strong direct effects of 1, 25(OH)2-23ene-D3 on cell proliferation and cell differentiation, coupled with its decreased activity of calcium metabolism make this compound an interesting candidate for clinical studies including patients with leukemia, as well as several skin disorders, such as psoriasis.

  • PDF

Mechanisms Regulating the Expression of Cytochrome P450 (CYP) Enzymes Involved in Xenobiotic Metabolism (외인성 화학물질의 대사에 관여하는 Cytochrome P450 (CYP) 효소의 발현조절 기전)

  • Gyesik Min
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.199-207
    • /
    • 2024
  • Cytochrome P450s (CYP) enzymes play a central role in the metabolism of both endogenous and xenobiotic chemical compounds. In particular, therapeutic drugs, natural products and environmental toxicants regulate expression of the tissue-specific CYP enzymes, This can cause CYP-mediated interactions among the chemical compounds such as the ingested drugs and toxicants, resulting in changes in their metabolism. This can lead to the modifications of their therapeutic and toxic effects. Intense investigations in this field throughout the last several decades have resulted in considerable progress in understanding the molecular mechanisms mediating the regulation of CYP gene expression. Now, it is well established that xenobiotic chemicals regulate the expression of specific CYP genes, and the corresponding xenobiotic-sensing receptors that mediate the expression control of specific CYP genes and their signal transduction pathways are involved in this process. This review summarizes the molecular mechanisms by which the well-known major xenobiotic-sensing receptors and other regulators affect the induction of CYP gene expression in response to exposure to various chemicals.

Recent insights into the role of ChREBP in intestinal fructose absorption and metabolism

  • Lee, Ho-Jae;Cha, Ji-Young
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.429-436
    • /
    • 2018
  • Fructose in the form of sucrose and high fructose corn syrup is absorbed by the intestinal transporter and mainly metabolized in the small intestine. However, excess intake of fructose overwhelms the absorptive capacity of the small intestine, leading to fructose malabsorption. Carbohydrate response element-binding protein (ChREBP) is a basic helix-loop-helix leucine zipper transcription factor that plays a key role in glycolytic and lipogenic gene expression in response to carbohydrate consumption. While ChREBP was initially identified as a glucose-responsive factor in the liver, recent evidence suggests that ChREBP is essential for fructose-induced lipogenesis and gluconeogenesis in the small intestine as well as in the liver. We recently identified that the loss of ChREBP leads to fructose intolerance via insufficient induction of genes involved in fructose transport and metabolism in the intestine. As fructose consumption is increasing and closely associated with metabolic and gastrointestinal diseases, a comprehensive understanding of cellular fructose sensing and metabolism via ChREBP may uncover new therapeutic opportunities. In this mini review, we briefly summarize recent progress in intestinal fructose metabolism, regulation and function of ChREBP by fructose, and delineate the potential mechanisms by which excessive fructose consumption may lead to irritable bowel syndrome.

Analysis and cloning of the gene involved in activation of maltose metabolism in Serratia marcescens. (Serratia marecscens에서 maltose 대사를 촉진하는 유전자의 클로닝 해석)

  • 이승진;유주순;김혜선;이상철;정수열;최용락
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.21-25
    • /
    • 2000
  • We have got several clones from Serratia marcescens which stimulated the cells to use maltose as a carbon source in Escherichia. coli TP2139 ( lac, crp). One of the cloned genes, pCKB17, was further analyzed. In order to find whether the increased expression of the gent was under the direction of maltose metabolism, we constructed several recombinant subclones. We have found that the clone, pCKB17AV, codes maltose metabolism stimulation(mms) gene. E. coli transformed with the cloned gene showed increase in the activity of maltose utilzation, The recombinant proteins expressed by multicopy and induction with IPTG, one polypeptide of 29-kDa, was confirmed by SDS-PAGE. The overexpression of maltose-binding proter protein in the presence of mms gene was confirmed by Western blot analysis. Southern hybridization analysis confirmed that the cloned DNA fragment was originated from S. marcescens chromosomal DNA.

  • PDF

Effect of Scutellariae Radix Extract on Human CYP450 Mediated-Drug Metabolism

  • Yoo, Hye-Hyun;Lim, Sun-Young;Kim, Dong-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.143-146
    • /
    • 2011
  • Scutellariae Radix is widely used in the traditional herbal medicine for the treatment of fever, cough, dysentery, hepatitis and hypertension in Korea, China and Japan. In this study, we investigated the effects of 70% ethanolic extract of Scutellariae Radix (SRE) on CYP450-mediated drug metabolism in the in vitro systems using human liver microsomes and hepatocytes. The microsomal incubation assay showed that SRE inhibited the drug metabolism reactions catalyzed by CYP1A2, CYP2C8 and CYP2C9 in a dose-dependent manner. In particular, SRE was shown to strongly inhibit the metabolic activity of CYP1A2 with an $IC_{50}$ value of 4.6 ${\mu}g/mL$. When SRE was evaluated for its effect on the induction of CYP450 enzyme activities in cryopreserved human hepatocytes, SRE did not exhibit any effect.

Induction of Anticarcinogenic Enzymes of Waxy Brown Rice Cultured with Phellinus igniarius 26005

  • Park, Ki-Bum;Ha, Hyo-Cheol;Kim, So-Yeun;Kim, Hyo-Jeong;Lee, Jae-Sung
    • Mycobiology
    • /
    • v.30 no.4
    • /
    • pp.213-218
    • /
    • 2002
  • The induction of NAD(P)H: quinone oxidoreductase(QR), glutathione S-transferase(GST), and glutathione(GSH) levels in hepa1c1c7 cells(murine hepatoma) by waxy brown rice cultured with Phellinus igniarius to induce anticarcinogenic enzymes were measured. In addition, the inhibition of polyamines metabolism was tested with the growth of Acanthamoeba castellanii. The result shows that QR, GST activities, and GSH levels of experimental animals were increased much more by feeding the methanol extract of waxy brown rice cultured with Phellinus igniarius than those of the rats received the ethanol of uncultured brown rice. The growth of A. castellanii was inhibited mostly at 40 mg/3 ml concentration of methanol extract of waxy brown rice cultured with P. gniarius. The results suggested that waxy brown rice cultured with P. igniarius possess chemopreventive activity by inducing anticarcinogenic enzymes and inhibiting polyamine metabolism.

Decreased Induction of Alcoholic Fatty Liver by YH430 in Rats (YH439의 알콜성 지방간생성 억제작용)

  • 강경애;김영철
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.267-271
    • /
    • 1995
  • A single large dose of ethanol as well as chronic ethanol consumption produces alcoholic fatty liver in human and experimental animals. We examined the effects of YH439, a potential hepatoprotective agent, on alcoholic fatty liver generation in adult female rats. In rats treated with YH439 (250 mg/kg, po) 4 hr prior to a single dose of ethanol (6 g/kg, po), a significant decrease in hepatic triglyceride accumulation was observed. YH439 also has an inhibitory effect on hepatic triglyceride and cholesterol accumulation induced by repeated ethanol treatments for one week. Because it has been known that induction of alcoholic fatty liver is associated with lipid peroxidation and/or hepatic glutathione depression, the effect of YH439 on these parameters was determined in the livers of rats treated with ethanol. Coadministration with YH439 inhibited MDA formation and gIutathione depression induced by acute or repeated ethanol administration. In order to determine the effect of YH439 on ethanol metabolism in vivo, disappearance of ethanol from blood was measured. In rats treated with a single dose of ethanol (6 g/kg, po), the ethanol concentration in blood reached a peak approximately 120 min following the treatment which declined linearly for 18 hrs. YH439 had no effect on the decline of blood ethanol concentration regardless of the dose of ethanol given to rats. These results in this study suggest that YH439 has an inhibitory effect on fatty liver generation induced by acute or repeated ethanol consumption through a mechanism not directly related to the rate of ethanol metabolism in vivo.

  • PDF

Phenanthrene biodegradation by Pseudonocardia hydrocarboxydans and Pseudomonas putida in presence of metabolic inducers

  • 조화영;신성호;우승한;박종문
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.340-343
    • /
    • 2003
  • Soils contaminated by hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), have become a major environmental issue due to toxic and carcinogenic properties of those compounds. In this work, we investigated effects of various metabolic inducers on phenanthrene biodegradation. Biodegradation tests were peformed with two different Pseudomonads: Pseudononrdia hydrocarboxydans (Gram positive) and Pseudomonas putida (Gram negative). Intermediates of phenanthrene metabolism (1-hydroxy-2-naphthoate, salicylate, catechol, phthalate and protocatechuate) were selected as inducers. The tests indicated that 1-hydroxy-2-naphthoate was the most effective inducer and enhanced the phenanthrene degradation rate up to 5.7 times, even though all the others also had induction ability to some extent. The effective induction could be achieved even at a low concentration of 1-hydroxy-2-naphthoate. Addition of metabolic inducers would be an attractive trick for the successful bioremediation of PAH-contaminated soil.

  • PDF