• Title/Summary/Keyword: Metabolic Products

Search Result 340, Processing Time 0.033 seconds

Identification of New Urinary Metabolites of Byakangelicin, a Component of Angelicae dahuricae Radix, in Rats

  • Kwon, Oh-Seung;Song, Yun-Seon;Shin, Kuk-Hyun;Ryu, Jae-Chun
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.606-611
    • /
    • 2003
  • Byakangelicin, 9-(2,3-dihydroxy-2-methylbutoxy)-4-methoxy-7H- furo[3,2-g][l]benzopyran-7-one (BKG), a component of Angelicae dahuricae Radix, is considered to be an inhibitor of aldose reductase for the treatment of diabetic cataract. An analytical method for the isolation of BKG developed by high-performance liquid chromatography has been reported. No literature on the metabolism of BKG, however, has been found. With the purpose of identifying new metabolites of BKG, BKG (100 mg/kg) was orally administered to Sprague-Dawley rats via a gavage. Using a metabolic cage, urine was collected for 24 h, and the urine samples were extracted by liquid-liquid extraction. For structural identification of new urinary metabolites of BKG, various instrumental analyses were conducted by gas-chromatography/mass spectrometry, high-performance liquid chromatography/diode array detector, liquid chromatography/mass spectroscopy with thermospray interface and $^1H$ nuclear magnetic resonance spectroscopy. Two metabolites produced from the Ο-demethylation or Ο-dealkylation of BKG were newly identified, and another new but unknown metabolite was assumed to be the hydroxylated form of BKG. These results indicate that the major metabolic products of BKG are formed by Ο-demethylation or Ο-dealkylation of BKG side chains.

Fabrication of a Partial Genome Microarray of the Methylotrophic Yeast Hansenula polymorpha: Optimization and Evaluation of Transcript Profiling

  • OH , KWAN-SEOK;KWON, OH-SUK;OH, YUN-WI;SOHN, MIN-JEONG;JUNG, SOON-GEE;KIM, YONG-KYUNG;KIM, MIN-GON;RHEE, SANG-KI;GERD GELLISSEN,;KANG, HYUN-AH
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1239-1248
    • /
    • 2004
  • The methylotrophic yeast Hansenula polymorpha has been extensively studied as a model organism for methanol metabolism and peroxisome biogenesis. Recently, this yeast has also attracted attention as a promising host organism for recombinant protein production. Here, we describe the fabrication and evaluation of a DNA chip spotted with 382 open reading frames (ORFs) of H. polymorpha. Each ORF was PCR-amplified using gene-specific primer sets, of which the forward primers had 5'-aminolink. The PCR products were printed in duplicate onto the aldehyde-coated slide glasses to link only the coding strands to the surface of the slide via covalent coupling between amine and aldehyde groups. With the partial genome DNA chip, we compared efficiency of direct and indirect cDNA target labeling methods, and found that the indirect method, using fluorescent-labeled dendrimers, generated a higher hybridization signal-to-noise ratio than the direct method, using cDNA targets labeled by incorporation of fluorescence-labeled nucIeotides during reverse transcription. In addition, to assess the quality of this DNA chip, we analyzed the expression profiles of H. polymorpha cells grown on different carbon sources, such as glucose and methanol, and also those of cells treated with the superoxide­generating drug, menadione. The profiles obtained showed a high-level induction of a set of ORFs involved in methanol metabolism and oxidative stress response in the presence of methanol and menadione, respectively. The results demonstrate the sensitivity and reliability of our arrays to analyze global gene expression changes of H. polymorpha under defined environmental conditions.

A CRISPR/Cas9 Cleavage System for Capturing Fungal Secondary Metabolite Gene Clusters

  • Xu, Xinran;Feng, Jin;Zhang, Peng;Fan, Jie;Yin, Wen-Bing
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • More and more available fungal genome sequence data reveal a large amount of secondary metabolite (SM) biosynthetic 'dark matter' to be discovered. Heterogeneous expression is one of the most effective approaches to exploit these novel natural products, but it is limited by having to clone entire biosynthetic gene clusters (BGCs) without errors. So far, few effective technologies have been developed to manipulate the specific large DNA fragments in filamentous fungi. Here, we developed a fungal BGC-capturing system based on CRISPR/Cas9 cleavage in vitro. In our system, Cas9 protein was purified and CRISPR guide sequences in combination with in vivo yeast assembly were rationally designed. Using targeted cleavages of plasmid DNAs with linear (8.5 kb) or circular (8.5 kb and 28 kb) states, we were able to cleave the plasmids precisely, demonstrating the high efficiency of this system. Furthermore, we successfully captured the entire Nrc gene cluster from the genomic DNA of Neosartorya fischeri. Our results provide an easy and efficient approach to manipulate fungal genomic DNA based on the in vitro application of Cas9 endonuclease. Our methodology will lay a foundation for capturing entire groups of BGCs in filamentous fungi and accelerate fungal SMs mining.

Cloning of Four Genes Involved in Limonene Hydroxylation from Enterobacter cowanii 6L

  • Yang, Eun-Ju;Park, Yeon-Jin;Chang, Hae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1169-1176
    • /
    • 2007
  • Genes encoding proteins responsible for limonene catabolism were cloned from a limonene-degrading microorganism, Enterobacter cowanii 6L, which was isolated from citron (Citrus junos) peel. The 8.6, 4.7, and 7.7 kb fragments (CD3, CD4, and CD6) of E. cowanii 6L chromosomal DNA that confer to E. coli the ability to grow on limonene have been cloned and their corresponding DNA sequences were determined. Nine open reading frames (ORFs) were identified, and the four ORFs (921 bp of CD3-2; 1,515 bp of CD4-1; 1,776 bp of CD6-1; and 1,356 bp of CD6-2) that encode limonene hydroxylase were confirmed by independently expressing these genes in E. coli. FAD and NADH were found to stimulate the hydroxylation reaction if added to cell extracts from E. coli recombinants, and multiple compounds (linalool, dihydrolinalool, perillyl alcohol, (${\alpha}-terpineol$, and ${\gamma}-terpineol$) were the principal products observed. Our results suggest that the isolate E. cowanii 6L has a broad metabolic capability including utilization of limonene. This broad metabolic ability was confirmed by identifying four novel limonene hydroxylase functional ORFs in E. cowanii 6L.

Nutritional status and metabolic syndrome risk according to the dietary pattern of adult single-person household, based on the Korea National Health and Nutrition Examination Survey (국민건강영양조사 자료에 의한 식이 패턴별 1인 가구의 영양 상태와 대사증후군 위험도)

  • Keum, Yu Been;Yu, Qi Ming;Seo, Jung-Sook
    • Journal of Nutrition and Health
    • /
    • v.54 no.1
    • /
    • pp.23-38
    • /
    • 2021
  • Purpose: This study was undertaken to evaluate the health, nutritional status and metabolic syndrome risk according to the dietary pattern of adult single-person households, using information obtained from the Korea National Health and Nutrition Examination Survey (KNHANES). Methods: Data were collected from the 2013-2016 KNHANES, of adults aged 19-64 years, belonging to single-person households. Based on cluster analysis, the dietary patterns of subjects were classified into three groups. The dietary behavior factors, health-related factors, nutritional status, and prevalence of metabolic syndrome obtained from KNHANES questionnaires were compared according to the individual dietary pattern. The nutrient intake data of the subjects were calculated using the semi-food frequency questionnaire. Moreover, blood and physical measurement data of the subjects were analyzed to obtain the prevalence of metabolic syndromes. Results: The major dietary intakes of subjects were classified as 'Rice and kimchi', 'Mixed', and 'Milk·dairy products and fruits' patterns. Characteristics of subjects based on their dietary pattern, gender, age, and education level were significantly different. The 'Milk and fruits' pattern showed low frequency of skipping breakfast and eating out, and had higher intake of dietary supplements. Frequency of alcohol intake and smoking rates were highest in the 'Mixed' pattern. Maximum nutrient intake of fat, vitamin A, riboflavin, vitamin C, niacin, calcium, phosphorus, and potassium was obtained in the 'Milk·dairy products and fruits' pattern. According to dietary patterns adjusted for age and gender, the risk of metabolic syndrome was 0.380 times lower in the 'Milk·dairy products and fruit' pattern than in the 'Rice and kimchi' pattern. However, when adjusted for other confounding factors, no significant difference was obtained between dietary patterns for metabolic syndrome risk. Conclusion: These results indicate that the health and nutritional status of a single-person household is possibly affected by the dietary intake of subjects.

Effects of Different Products and Levels of Selenium on Growth, Nutrient Digestibility and Selenium Retention of Growing-finishing Pigs

  • Tian, J.Z.;Yun, M.S.;Kong, C.S.;Piao, L.G.;Long, H.F.;Kim, J.H.;Lee, J.H.;Lim, J.S.;Kim, C.H.;Kim, Y.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • This experiment was conducted to evaluate the effects of different selenium (Se) products (inorganic, organic A, organic B) added at two supplemental dietary Se levels (0.1 and 0.3 mg/kg) on growth performance, nutrient digestibility and Se retention in growing-finishing pigs. A $3{\times}2$ factorial arrangement of treatments was used in a RCB design, with a non-Se-fortified basal diet serving as the negative control. A total of 56 crossbred pigs (28 male and 28 female pigs) initially weighing an average $28.45{\pm}0.53kg$ BW were allotted to each treatment with four pigs per pen on the basis of sex and weight. Two pigs per pen were selected and bled from the anterior vena cava at 3- weekly intervals to analyze Se concentration. In the growing phase (0-6 weeks), increased ADFI was observed when pigs were fed organic Se compared to those fed the control diet or inorganic Se treatment (p<0.05). Pigs fed inorganic Se had a great ADFI than pigs fed organic Se (p<0.05) in the late finishing phase (7-12 weeks), although there were no differences in whole period ADFI between organic or inorganic Se products. During 12 weeks of the whole experimental period, serum Se concentration increased linearly when dietary Se level increased regardless of Se products (p<0.05). Both dietary Se source (p<0.05) and Se level (p<0.01) influenced the Se concentration of various pig tissues at end of this experiment and Se content was the highest in the kidney. For the determination of nutrient digestibility, a metabolic trial was conducted in 3 replicates in randomized complete block (RCB) design. A total of 21 barrows ($50.21{\pm}0.62kg$ of average BW) were used in the metabolic study. Selenium supplementation had no effect on nutrient digestibility except for crude protein. Crude protein digestibility increased with dietary supplementation of organic Se (A) compared with other forms of Se products or control diet (p<0.05). Consequently, this experiment indicated that dietary Se products and levels had no effect on growth performance of pigs. Se concentration in tissues and serum was increased in proportion to dietary Se level, especially when organic Se was provided. Although pigs were fed organic forms of Se, bioavailability of organic forms varied among products, consequently bioactivity of organic products to the animals should be evaluated before practical application in animal feed.

Potential Induction of Quinone Reductase Activity of Natural Products in Cultured Murine Hepa1c1c7 Cells

  • Heo, Yeon-Hoi;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.7 no.2
    • /
    • pp.38-44
    • /
    • 2001
  • NAD(P)H:quinone reductase (QR), known as DT-diaphorase, is a kind of detoxifying phase II metabolic enzyme catalyzing hydroquinone formation by two electron reduction pathway from quinone type compounds, and thus facilitating excretion of quinoids from human body. With the usefulness of QR induction activity assay system for the modulation of toxicants, in the course of searching for cancer chemopreventive agents from natural products, the methanolic extracts of approximately two hundreds of oriental medicines were primarily evaluated using the induction potential of quinone reductase (QR) activity in cultured murine Hepa1c1c7 cells. As a result, several extracts including Hordeum vulgare, Momordica cochinchinensis, Strychnos ignatii, Houttuynia cordata, and Polygala japonica were found to significantly induce QR activity. In addition, the methylene chloride fraction of H. vulgare, one major dietary food source, showed potent induction of QR activity $(CD=6.4{\mu}g/ml)$. Further study for isolation of active principles from these lead extracts is warranted for the discovery of novel cancer chemopreventive agents.

  • PDF

Diagnostic Evaluation of Enzyme Activity Related to Steroid Metabolism by Mass Spectrometry-Based Steroid Profiling

  • Choi, Man Ho;Chung, Bong Chul
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • Gas chromatography-mass spectrometry (GC-MS) methods have been used extensively in clinical steroid analyses. Evaluating the metabolic ratios of precursors to products by accurate quantification of individual steroid levels in biological samples can reveal the activities of enzymes associated with steroid metabolism. This review article discusses the impact of GC-MS-based steroid profiling on our understanding of the biochemical role of steroids and their metabolic enzymes in hormone-dependent diseases, such as congenital adrenal hyperplasia (CAH), cortisol-mediated hypertension, apparent mineralocorticoid excess (AME), male-pattern baldness, and breast and thyroid cancers. Steroid profiling is a comprehensive analytical technique that can be applied whenever the highest specificity is required and may be a reasonable initial diagnostic approach.

Enterobacter sp. JE-1에 의한 Congo Red의 생분해

  • 공은진;김종수
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.473-480
    • /
    • 1998
  • The bacterial strain JE-1 degrading and utilizing Congo Red as a sole carbon source was isolated from dye-contaminated soul and Identified as Enterobacter species. Enterobacter sp. JE-1 had the highesc decolorization ability when It was cultured In the medium containing 0.05% $NH_4N0_3, 0.05% K_2HP0_4, 0. 03%$ $MgSO_4$, $7H_2O$, 0.025% Congo Red, initial pH 7.0 at $30^{\circ}C$, respectively Enterobacter sp. n-1 had the relatively high substrate specificity. The dye decolorizing activity was exclusively extracellular. The expected metabolic intermediates of Congo Red by Enterobacter sp.15-1 were analyzed by GC/MS. As a result. metabolic products like hauadecanoic acid, 1, 2, 3-triphenylcyclopropene, aliphatic hydrocarbons butylester were detected. Benzldine 616 not detected.

  • PDF

Overproduction of Lactic Bacterial Enzymes and Bioactive Components

  • Lee, Byong-H.
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.45-55
    • /
    • 2002
  • Recent developments in the application of molecular biology to food grade lactic acid bacteria (LAB) have shown that it could be feasible to engineer metabolic pathways to either enhance specific metabolic fluxes or to divert metabolites for the production of different or new end products. This engineering requires detailed knowledge of enzymes involved in metabolism and regulation within the targeted organism but little works have been done in this area. During biochemical and molecular characterisation of lactic bacterial enzymes, some of probiotic Lactobacillus and Bifidobacterium species were found to be very useful for food, nutraceutical and pharmaceutical industries. The enzymes are usually intracellular and the yields are very low to be useful for industrial applications. Among many enzymes and proteins of lactic bacteria studied, some of our gene cloning achievements have contributed to overproduction of lactic bacterial enzymes such as peptidases, esterases, lactases, bile salt hydrolases and linoleate isomerases for foods and nutraceuticals.

  • PDF