• Title/Summary/Keyword: MetPhoMod

Search Result 4, Processing Time 0.02 seconds

Air Ventilation Evaluation at Nighttime for the Construction of Wind Corridor in Urban Area (도시지역의 바람길 조성을 위한 야간시간대의 공기순환성 평가)

  • Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.16-29
    • /
    • 2013
  • The purpose of this study is to evaluate air ventilation using wind patterns of MetPhoMod program at nighttime focused on Changwon-si, Gyeongsangnam-do. Evaluation indices of air ventilation are wind resistant and retention used by results of each wind speed and diversity. The results are as follows. Vulnerable areas of air ventilation are Bonglim-dong, Bansong-dong, Yongji-dong and so on. In high-rise apartment, commercial area and single residential area of Yongji-dong, Sangnam-dong and Sapa-dong, wind is stagnated by high buildings. Therefore, these areas should construct urban spaces to circulate the wind. And to inflow persistingly the fresh wind generated in a rural area, we think that the construction of wind corridor is suggested by development plan and policy wind corridor.

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Development of Climate Analysis Seoul(CAS) Maps Based on Landuse and Meteorogical Model (토지이용도와 기상모델을 이용한 서울기후분석(CAS)지도 개발)

  • Yi, Chae-Yeon;Eum, Jeong-Hee;Choi, Young-Jean;Kim, Kyu-Rang;Scherer, Dieter;Fehrenbach, Ute;Kim, Geun-Hoi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.12-25
    • /
    • 2011
  • It is needed to preserve good effects and to prevent bad influences on local climate in urban and environmental planning. This study seeks to develop climate analysis maps to provide realistic information considering local air temperature and wind flows. Quantitative analyses are conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod - a mesoscale weather model. The CAS helps The easier analysis and assessment of urban development on local climate. It will contribute to the better life of the people in cities by providing better understanding of the local climate to the urban space planners.

Analysis of the Thermal Environment around an Urban Green Area in Seoul, Korea Using Climate Analysis Seoul (CAS) (Climate Analysis Seoul (CAS)를 이용한 서울 도심 녹지 주변의 열 환경 분석)

  • Lee, Jisu;Lee, Young-Gon;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.413-421
    • /
    • 2016
  • Climate Analysis Seoul (CAS) which provides gridded data relevant for thermal assessment was applied to one of the urban green areas, the Seonjeongneung, in Seoul, Korea. The thermal environment in the Seonjeongneung was evaluated from the CAS simulation for the five heat-wave issued cases during the last five years (2011~2015). The CAS has been improved continuously since it was developed. An updated version with a higher resolution of the CAS simulation domain and an addition of the vegetation information was used in this study. The influence of vegetation in the Seonjeongneung is estimated through the amount of the cold air generation ($Q_{ca}$) and air temperature deviation at each grid points, which are calculated by incorporating Geographic Information System (GIS) analysis on the simulation domain and meteorological analysis with the METeorology and atmospheric PHOtochemistry mesoscale MODel (MetPhoMod) in the CAS. The average amount of the cold air generation ($Q_{ca}$) at the Seonjeongneung is about $25.5m^3m^{-2}h^{-1}$ for the whole cases, and this value is similar to the ones in a forest or a well-wooded region. The average value of the total air temperature deviation (TD) is $-2.54^{\circ}C$ at the Seonjeongneung for the five cases. However, this cooling effect of the urban green area disappeared when the region is replaced by high-rise buildings in the CAS simulation. The $Q_{ca}$ drastically decreases to about $1.1m^3m^{-2}h^{-1}$ and the average TD shows an increase of $1.14^{\circ}C$ for the same events. This result shows that the vegetation in the Seonjeongneung supposes to keep down temperature during the heat-wave issued day and the average cooling effect of the green region is $3.68^{\circ}C$ quantitatively from the TD difference of the two simulations. The cooling effect represented with the TD difference is larger than $0.3^{\circ}C$ within 200 m distance from the boundary of the Seonjeongneung. Further improvements of the thermodynamical and advection processes above the model surface are required to consider more accurate assessment of the cooling effect for the urban green area.