• Title/Summary/Keyword: Mesh number

Search Result 631, Processing Time 0.028 seconds

A Study on the Characteristics of Heat Transfer in Heat Pipe with Composition Wick of Screwed Groove - Metallic Mesh (나선형그루브-금망의 복합윅을 갖는 히이트파이프의 전열특성에 관한 연구)

  • Chang, Young-Suk;Lee, Young-Soo;Seoh, Jeong-Il
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.3
    • /
    • pp.273-282
    • /
    • 1986
  • The purpose of this research was to study the characteristics of heat transfer in Heat Pipe which used the composition wick of screened groove - metallic mesh by ADI method and experimental results. As the results, the more than number of metallic mesh screen layers in a heat pipe increased, the fewer the effect of heat recovery decreased. In case of 1 - layer metallic mesh screen wick, the response of the effect in heat recovery was more rapidly showed than in case of other layers and in spite of high load, the evaporation section of Heat pipe with 1 - layer metallic mesh screen wick showed the stable response and did not show excessive super heat. There was a interrelation between thermal resistance and the variable layers, between thermal resistance and the variable gaps of metallic meshes, the heat transfer characteristics of Heat pipe were depended on the thermal resistance of composition wick.

  • PDF

Polygon Approximation Based Cognitive Information Delivery in Geo-location Database Oriented Spectrum Sharing

  • Wei, Zhiqing;Wu, Huici;Feng, Zhiyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2926-2945
    • /
    • 2017
  • In geo-location database oriented spectrum sharing system, the entire geographic area is divided into meshes to classify, store and delivery the cognitive information. In this paper, we propose a flexible polygon mesh division scheme to reduce the number of meshes. Hence the cognitive information can be reduced correspondingly. Besides, polygon mesh can approximate the real environment and reduce the error of cognitive information because the edges of polygon are selected along the boundaries of the networks. We have designed the polygon approximation algorithm and have analyzed the relation between the error and the number of polygon's edges. Finally, the simulation results are provided to verify the algorithm and analysis. The polygon mesh division scheme in this paper provides an efficient approach for cognitive information organization in database oriented spectrum sharing system.

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

Numerical Comparisons Between URANS and Hybrid RANS/LES at a High Reynolds Number Flow Using Unstructured Meshes

  • You, Ju-Yeol;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • In the present study, the turbulent flow fields around a circular cylinder at $Re=3.6{\times}10^6$ were investigated based on an unstructured mesh technique, and the comparisons between URANS(S-A, SST) and hybrid RANS/LES(DES, SAS) methods for the simulation of high Reynolds number flow have been conducted. For this purpose, unsteady characteristics of vortex shedding and time-averaged quantities were compared. A quasi-steady solution-adaptive mesh refinement was also made for the URANS and hybrid RANS/LES approaches. The results showed that the simple changes in the turbulent length scale or source term of turbulent models made the flow fields less dissipative and more realistic in hybrid RANS/LES methods than the URANS approaches.

Automatic decomposition of unstructured meshes employing genetic algorithms for parallel FEM computations

  • Rama Mohan Rao, A.;Appa Rao, T.V.S.R.;Dattaguru, B.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.6
    • /
    • pp.625-647
    • /
    • 2002
  • Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.

The Study of Structural Stability by Stacking Method of the Axial Blade (축류 블레이드의 스태킹 방식에 의한 구조 안정성 연구)

  • Jeong, Cheol-Young;Ko, Hee-Hwan;Park, Jun-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.46-51
    • /
    • 2012
  • This study is to confirm the deformation of blade when the location of stacking is moving. Also, it desire to determine the most stable location of stacking from the analysis. In the previous study, it is Known that moving the location of stacking is not influence to the aerodynamic performance. In this study SolidWorks premium 2010 SP4 is used for structure analysis. In reference blade and other 3 model analysis, the two mesh type is used, one is standard mesh type in SolidWorks, the other is curvature-based mesh type. The result of curvature-based mesh type is more stable than one of the standard mesh type regardless of mesh size, the number of mesh. The deformation of blade tip is the smallest, when the location of stacking is identical to the center of gravity of the blade section profile. So, if possible is design, this study recommends that the location of stacking is identical to the center of gravity the blade.

A study on the mesh selectivity of hairtail (Trichiurus lepturus) caught by coastal drift gill net (연안 유자망에 의한 갈치(Trichiurus lepturus)의 망목 선택성에 관한 연구)

  • KIM, Seonghun;KIM, Pyungkwan;JEONG, Seong-Jae;LEE, Kyounghoon;OH, Wooseok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.4
    • /
    • pp.285-293
    • /
    • 2019
  • The mesh selectivity of hairtail (Trichiurus lepturus) caught by coastal drift gill net was examined in field experiments with three different mesh sizes (45, 50 and 55 mm) from October to November, 2013 in the coastal areas of south-west of Jeju province. The mesh selectivity tests were conducted with the experimental net to be set middle part of conventional driftnets. The mesh selectivity tests were carried out the total of four times. The selectivity curve was estimated by the Kitahara's and Fujimori's method. In the results, the catch number of hairtail was 653 (125.8 kg) and occupied 34.8% in total catches weight. The optimal mesh size for 50% selection on the minimum landing size (180 mm, AL) and the first maturity size (260 mm, AL) of hairtail were estimated as 47.2 mm and 64.5 mm by master selectivity curves, respectively.

Heat Transfer Augmenttaion by use of Wire Mesh-Screens in Impinging Water Jet (와이어 망을 이용한 충돌 수분류의 열전달 증진)

  • Yun, S.H.;Lee, J.S.;Choi, G.G.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.43-51
    • /
    • 1999
  • Axisymmetric circular water jet impinges against rectangular heated surface with uniform hear flux and wire-mesh screens are set up in the nozzle-to-heater space to augment heat transfer. In the free jet region to be used them, pressure drop and intensive turbulence flow was brought up. When water jet system is not used wire-mesh screens, maximum heat transfer appears in the stagnation point and the secondary maximum appears X/D=4 but it disappears when they are is used. In the low velocity(Vo<6.0m/s), coarse mesh-screen enhanced heat transfer but fine mesh-screens inpeded heat transfer. In the high velocity(Vo>6m/s), all of them enhanced heat transfer. Average Nusselt number of experimental system to be used wire-mesh screens was promoted $4{\sim}6$times than that of simple water jet system. The stagnation heat transfer of experimental system to be used wire-mesh screens was augmented 6times that of simple water jet system.

  • PDF

Development of Two Dimensional Chloride Ion Penetration Model Using Moving Mesh Technique (Moving Mesh Technique을 이용한 2차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • Most of chloride diffusion models based on finite difference method (FDM) could not express the diffusion in horizontal direction at each elevation. To overcome these weakness, two dimensional chloride ion penetration model based on finite element method (FEM) to be able to combine various multi-physics simultaneously was suggested by introducing moving mesh technique. To avoid the generation of mesh being able to be distorted depending on the relative movement of water level to static concrete, a rectangular type of mesh was intentionally adopted and the total number of meshes was empirically selected. The simulated results showed that the contents of surface chloride decreased following to the increase of elevation in the top part of low sea level, whereas there were no changes in the bottom part of low level. In the DuraCrete model, the diffusion coefficient of splashed zone is generally smaller than submerged zone, whereas the trend of Life365 model is reverse. Therefore, it could be understood that the developed model using moving mesh technique effectively reflects $DuraCrete^{TM}$ model rather than $Life365^{TM}$ model. In the future, the model will be easily expanded to be combined with various multi-physics models considering water evaporation, heat of hydration, irradiation effect of sun and so on because it is based on FEM.

A new moving-mesh Finite Volume Method for the efficient solution of two-dimensional neutron diffusion equation using gradient variations of reactor power

  • Vagheian, Mehran;Ochbelagh, Dariush Rezaei;Gharib, Morteza
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1181-1194
    • /
    • 2019
  • A new moving-mesh Finite Volume Method (FVM) for the efficient solution of the two-dimensional neutron diffusion equation is introduced. Many other moving-mesh methods developed to solve the neutron diffusion problems use a relatively large number of sophisticated mathematical equations, and so suffer from a significant complexity of mathematical calculations. In this study, the proposed method is formulated based on simple mathematical algebraic equations that enable an efficient mesh movement and CV deformation for using in practical nuclear reactor applications. Accordingly, a computational framework relying on a new moving-mesh FVM is introduced to efficiently distribute the meshes and deform the CVs in regions with high gradient variations of reactor power. These regions of interest are very important in the neutronic assessment of the nuclear reactors and accordingly, a higher accuracy of the power densities is required to be obtained. The accuracy, execution time and finally visual comparison of the proposed method comprehensively investigated and discussed for three different benchmark problems. The results all indicated a higher accuracy of the proposed method in comparison with the conventional fixed-mesh FVM.