• Title/Summary/Keyword: Mesh heater

Search Result 22, Processing Time 0.015 seconds

Isothermal Characteristics of a Rectangular Parallelepiped Sodium Heat Pipe

  • Boo Joon Hong;Park Soo Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1044-1051
    • /
    • 2005
  • The isothermal characteristics of a rectangular parallelepiped sodium heat pipe were inves­tigated for high-temperature applications. The heat pipes was made of stainless steel of which the dimension was $140\;m\;(L)\;{\times}\;95m\;(W)\;{\times}\;46 m\;(H)$ and the thickness of the container was 5 mm. Both inner surfaces of evaporator and condenser were covered with screen meshes to help spread the liquid state working fluid. To provide additional path for the working fluid, a lattice structure covered with screen mesh wick was inserted in the heat pipe. The bottom surface of the heat pipe was heated by an electric heater and the top surface was cooled by circulating coolant. The concern in this study was to enhance the temperature uniformity at the bottom surface of the heat pipe while an uneven heat source up to 900 W was in contact. The temperature distribution over the bottom surface was monitored at more than twenty six locations. It was found that the operating performance of the sodium heat pipe was critically affected by the inner wall temperature of the condenser region where the working fluid may be changed to a solid phase unless the temperature was higher than its melting point. The maximum temperature difference across the bottom surface was observed to be $114^{\circ}C$ for 850 W thermal load and $100^{\circ}C$ coolant inlet temperature. The effects of fill charge ratio, coolant inlet temperature and operating temperature on thermal performance of heat pipe were analyzed and discussed.

Development and Evaluation of Smart Foundation with Heating Devices (발열장치를 이용한 보온 기능성 스마트 파운데이션의 개발 및 평가)

  • Hwang, Young-Mi;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2013
  • This research developed a smart girdle for adult women in their 20's that has an inserted carbon weaving heater to help with relief from coldness and abdominal disease through the thermal insulation effect. A pocket of powernet fabric was attached to the inside of the girdle for the easy insertion and separation of the heating device, while the heating device was fixed to a mesh material by cotton yarn and was wrapped with elastic lining material to prevent the mechanical devices from being exposed. A set of 3 hooks was attached to the center of the back of the heating device in consideration of convenience and mobility. Whereas the switch was inserted into around the right waistband, and the battery into the inner pocket around the waist, to integrate the heating device with the girdle. The satisfaction and usability of the fabricated smart girdle was verified by having research participants wear it to evaluate the appearance change caused by the device, the inconvenience of wearing/unwearing, mobility, and the satisfactory functionality of the device. As a result, the grand mean was evaluated to be high, with appearance (4.19), mobility (4.17), and functionality (4.51) being higher than 4.00; which indicates that the heat generation function of the smart girdle is effective. It may be said that such collection and analysis of data that reflect users' opinions have value and significance in that they can be grafted onto future research on new technology as well as they contribute to taking a step forward in the rapidly increasing research of smart clothing, with the new-type clothing equipped with new function.