• Title/Summary/Keyword: Mesh generation

Search Result 522, Processing Time 0.023 seconds

A study on the identification of underwater propeller singing phenomenon (수중 프로펠러 명음 현상의 규명에 관한 연구)

  • Kim, Taehyung;Lee, Hyoungsuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2018
  • This paper is a study on the generation mechanism of propeller singing based on the cavitation tunnel test, underwater impact test, finite element analysis and computational flow analysis for the model propeller. A wire screen mesh, a propeller and a rudder were installed to simulate ship stern flow, and occurrence and disappearance of propeller singing phenomenon were measured by hydrophone and accelerometer. The natural frequencies of propeller blades were predicted through finite element analysis and verified by contact and non-contact impact tests. The flow velocity and effective angle of attack for each section of the propeller blades were calculated using RANS (Reynolds Averaged Navier-Stokes) equation-based computational fluid analysis. Using the high resolution analysis based on detached eddy simulation, the vortex shedding frequency calculation was performed. The numerical predicted vortex shedding frequency was confirmed to be consistent with the singing frequency and blade natural frequency measured by the model test.

A Study on the Microwave Electric-Field Focusing Waveguide Systems for Driving Plasma Visible Light (플라즈마 가시광 구동을 위한 초고주파 전계 집속형 도파관 시스템에 관한 연구)

  • Jeon, Hoo-Dong;Park, Eui-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.303-312
    • /
    • 2009
  • In this study, a waveguide system for focusing the electric field is presented to emit the microwave-driven plasma visible light. This system consists of a magnetron for the microwave power supply, the waveguide section for power propagation, and the mesh-type cavity reactor. The quartz bulb containing a dose of sulfur powder and buffer gas Ar is located in the reactor, and forced by the strongly concentrated electric field for generating and exciting the sulfur plasma. That is, the conductor tips are loaded on each inner wall of the waveguide and the reactor, and then the plasma bulb is positioned between the tips, hence focusing the strong electric field on the bulb. Furthermore the waveguide section is designed for minimizing the degradations of matching characteristics according to the variations of the electrical conductivities of plasma at the transitory phase for plasma generation, hence providing the stable operation. Finally, the 2.45 GHz aluminum waveguide system is constructed, and then experiments for emitting the visible light are performed by using 400 W-class magnetron, showing the validity of designed system.

Haptic Media Broadcasting (촉각방송)

  • Cha, Jong-Eun;Kim, Yeong-Mi;Seo, Yong-Won;Ryu, Je-Ha
    • Broadcasting and Media Magazine
    • /
    • v.11 no.4
    • /
    • pp.118-131
    • /
    • 2006
  • With rapid development in ultra fast communication and digital multimedia, the realistic broadcasting technology, that can stimulate five human senses beyond the conventional audio-visual service is emerging as a new generation broadcasting technology. In this paper, we introduce a haptic broadcasting system and related core system and component techniques by which we can 'touch and feel' objects in an audio-visual scene. The system is composed of haptic media acquisition and creation, contents authoring, in the haptic broadcasting, the haptic media can be 3-D geometry, dynamic properties, haptic surface properties, movement, tactile information to enable active touch and manipulation and passive movement following and tactile effects. In the proposed system, active haptic exploration and manipulation of a 3-D mesh, active haptic exploration of depth video, passive kinesthetic interaction, and passive tactile interaction can be provided as potential haptic interaction scenarios and a home shopping, a movie with tactile effects, and conducting education scenarios are produced to show the feasibility of the proposed system.

Integrity Evaluation for 3D Cracked Structures(II) (3차원 균열을 갖는 구조물에 대한 건전성 평가(II))

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Three Surface cracks are among the more common flaws in aircraft and pressure vessel components. Accurate stress intensity analyses and crack growth rate data of surface-cracked components are needed for reliable prediction of their fatigue life and fracture strengths. Three Dimensional finite element method (FEM) was used to obtain the stress intensity factor for surface cracks existing in structures. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Nodes are generated by bucket method, and quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in cylindrical structures subjected to pressure is calculated. Analysis results by present system showed good agreement with those by ASME equation and Raju-Newman's equation.

PEMFC Optimization Design Using Genetic Algorithm (유전자 알고리즘을 이용한 고분자 전해질 연료전지 최적화 설계)

  • Yang, Woo-Joo;Wang, Hong-Yang;Lee, Dae-Hyung;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.889-897
    • /
    • 2014
  • This paper presents a method for finding an optimized result by using a genetic algorithm (GA) based on a PEMFC analysis result. The conventional analysis method designs fuel cells one-by-one, and each result is compared to obtain the best performance. Because the computational burden of the conventional analysis is enormous, the present optimization process provides an inefficient tool by automatically setting the boundary and material properties and mesh generation. As the change can be reflected automatically in the channel geometry with GA, the fuel cell analysis result with various sizes can be obtained easily. Therefore, the global maximum performance can be obtained through a GA optimization procedure.

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.

Multi-material topology optimization for crack problems based on eXtended isogeometric analysis

  • Banh, Thanh T.;Lee, Jaehong;Kang, Joowon;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.663-678
    • /
    • 2020
  • This paper proposes a novel topology optimization method generating multiple materials for external linear plane crack structures based on the combination of IsoGeometric Analysis (IGA) and eXtended Finite Element Method (X-FEM). A so-called eXtended IsoGeometric Analysis (X-IGA) is derived for a mechanical description of a strong discontinuity state's continuous boundaries through the inherited special properties of X-FEM. In X-IGA, control points and patches play the same role with nodes and sub-domains in the finite element method. While being similar to X-FEM, enrichment functions are added to finite element approximation without any mesh generation. The geometry of structures based on basic functions of Non-Uniform Rational B-Splines (NURBS) provides accurate and reliable results. Moreover, the basis function to define the geometry becomes a systematic p-refinement to control the field approximation order without altering the geometry or its parameterization. The accuracy of analytical solutions of X-IGA for the crack problem, which is superior to a conventional X-FEM, guarantees the reliability of the optimal multi-material retrofitting against external cracks through using topology optimization. Topology optimization is applied to the minimal compliance design of two-dimensional plane linear cracked structures retrofitted by multiple distinct materials to prevent the propagation of the present crack pattern. The alternating active-phase algorithm with optimality criteria-based algorithms is employed to update design variables of element densities. Numerical results under different lengths, positions, and angles of given cracks verify the proposed method's efficiency and feasibility in using X-IGA compared to a conventional X-FEM.

Transient simulation and experiment validation on the opening and closing process of a ball valve

  • Han, Yong;Zhou, Ling;Bai, Ling;Xue, Peng;Lv, Wanning;Shi, Weidong;Huang, Gaoyang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1674-1685
    • /
    • 2022
  • The ball valve is an important device in the pipeline transportation system of nuclear power plants. Its operational stability and safety directly affect the normal working of nuclear power plants. In this study, the transient numerical simulation of the opening and closing process of a ball valve was conducted on the basis of the flow interruption capability experiment of the ball valve by using the moving mesh method and inlet and outlet variable boundary conditions. The flow rate and pressure difference with time of the opening and closing process of the ball valve were studied. The internal flow characteristics of the ball valve under different relative openings were analyzed in conjunction with the typical back-step flow structure. Results show that the transient numerical results agree well with the experimental results. The internal flow characteristics of the ball valve are similar at the same opening during opening and closing process. At small opening, the spool and outlet channels easily form a back-step flow structure. The disappearance and generation of backflow vortices during opening and closing occur at 85% opening and 75% opening, respectively. With the decrease in opening degree, the difference in vortex core area in the flow channel of the ball valve spool in the opening and closing process gradually appears. The research results provide some reference value for the design and optimization of ball valves.

Optimal Structural Design Framework of Composite Rotor Blades Using PSGA (PSGA를 이용한 복합재료 블레이드의 최적 구조설계 프레임워크 개발 연구)

  • Ahn, Joon-Hyek;Bae, Jae-Seong;Jung, Sung Nam
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2022
  • In this study, an optimal structural design framework has been developed for the structural design of composite helicopter blades. The optimal design framework is constructed using PSGA (Particle Swarm assisted Genetic Algorithm), which combines the genetic algorithm and particle swarm optimizer. The optimization process consists of a finite element (FE) modeling over the blade section, two-dimensional (2D) cross-sectional FE analysis, and 1D rotating blade analysis. In the design process, the geometric curves and surfaces are formed using the B-spline scheme while discretizing the sections via a FE mesh generation program Gmsh. The blade cross-sections are created in accordance with the design variables when performing the blade structural analysis. The proposed optimization design framework is applied to a modernization of the HART II (Higher-harmonic Aeroacoustics Rotor Test II) blades. It is demonstrated that an improved blade design is reached through the current optimization framework with the satisfaction of all design requirements set for the study.

Walking path design considering with Slope for Mountain Terrain Open space

  • Seul-ki Kang;Ju-won Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.103-111
    • /
    • 2023
  • Mountains area, especially walking in open space is important for special active field which is based on mountain terrain. Recent research on pedestrian-path includes elements about pedestrian and various environment by analyzing network, but it is mainly focusing on limited space except for data-poor terrain like a mountain terrain. This paper proposes an architecture to generate walking path considering the slope for mountain terrain open space through virtual network made of mesh. This architecture shows that it reflects real terrain more effective when measuring distance using slope and is possible to generate mountain walking path using open space unlike other existing services, and is verified through the test. The proposed architecture is expected to utilize for pedestrian-path generation way considering mountain terrain open space in case of distress, mountain rescue and tactical training and so on.