• Title/Summary/Keyword: Mesenchymal stem cell transplantation

Search Result 75, Processing Time 0.024 seconds

Allogeneic clonal mesenchymal stem cell therapy for refractory graft-versus-host disease to standard treatment: a phase I study

  • Yi, Hyeon Gyu;Yahng, Seung-Ah;Kim, Inho;Lee, Je-Hwan;Min, Chang-Ki;Kim, Jun Hyung;Kim, Chul Soo;Song, Sun U.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • Severe graft-versus-host disease (GVHD) is an often lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). The safety of clinical-grade mesenchymal stem cells (MSCs) has been validated, but mixed results have been obtained due to heterogeneity of the MSCs. In this phase I study, the safety of bone marrow-derived homogeneous clonal MSCs (cMSCs) isolated by a new subfractionation culturing method was evaluated. cMSCs were produced in a GMP facility and intravenously administered to patients who had refractory GVHD to standard treatment resulting after allogeneic HSCT for hematologic malignancies. After administration of a single dose ($1{\times}10^6cells/kg$), 11 patients were evaluated for cMSC treatment safety and efficacy. During the trial, nine patients had 85 total adverse events and the rate of serious adverse events was 27.3% (3/11 patients). The only one adverse drug reaction related to cMSC administration was grade 2 myalgia in one patient. Treatment response was observed in four patients: one with acute GVHD (partial response) and three with chronic GVHD. The other chronic patients maintained stable disease during the observation period. This study demonstrates single cMSC infusion to have an acceptable safety profile and promising efficacy, suggesting that we can proceed with the next stage of the clinical trial.

Development of Cell Therapeutics against Ischemic Vascular Diseases Using Mesenchymal Stem Cells: From Bench to Bed (중간엽줄기세포(MSC)를 이용한 허혈성 혈관질환 치료를 위한 세포치료제 개발: 기초연구에서 임상연구)

  • Lee, Eun Ji;Park, Shin Hu;Seo, Jeong Ho;An, Hyo Gyung;Nam, Si Hyun;Kwon, Sang-Mo
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.567-577
    • /
    • 2022
  • Recently, the prevalence of ischemic diseases, such as ischemic heart disease, cerebral ischemia, and peripheral arterial disease, has been continuously increasing due to the aging population. The current standardized treatment for ischemic diseases is reperfusion therapy through pharmacotherapy and surgical approaches. Although reperfusion therapy may restore the function of damaged arteries, it is not effective at restoring the function of the surrounding tissues that have been damaged due to ischemia. Therefore, it is necessary to develop a new treatment strategy that can safely and effectively treat ischemic damage and restore the function of surrounding tissues. To overcome these limitations, stem cell-based therapy to regenerate the damaged region has been studied as a promising strategy for ischemic vascular diseases. Mesenchymal stem cells (MSCs) can be isolated from diverse tissues and have been shown to be promising for the treatment of ischemic disease by regenerating damaged tissues through immunomodulation, the promotion of angiogenesis, and the secretion of various relevant factors. Moreover, new approaches to enhancing MSC function, such as cell priming or enhancing transplantation efficiency using a 3D culture method, have been studied to increase stem cell therapeutic efficacy. In this review, we provide various strategies by which MSCs are used to treat ischemic diseases, and we discuss the challenges of MSC transplantation, such as the differentiation, proliferation, and engraftment of MSCs at the ischemic site.

THE EFFECTS OF UNDIFFERENTIATED MESENCHYMAL STEM CELLS ON SINUS BONE GRAFTING IN RABBIT (가토의 상악동 골이식술시 미분화 간엽 줄기세포의 골형성 효과)

  • Oh, Sung-Hwan;Choi, Young-Won;Kim, Bum-Soo;Yeo, In-Bum;Jo, Pil-Kwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.520-530
    • /
    • 2006
  • Undifferentiated mesencymal stem cells(UMSCs) have been thought to be multipotent cells that can replicate as undifferentiated cells and that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. It can be used to sinus lifting, Guided bone regeneration, other bone graft in dental part. The purpose of this study is to evaluate the effect of mesencymal stem cells on sinus augmentation with autogenous bone, fibrin glue mixture in a rabbit model. 8 New Zealand white rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, undifferentiated mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, The animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, Stem cell group showed integrated graft bone with host bone from sinus wall. At 2 and 4weeks, It showed active newly formed bone and neovascularization. At 8 weeks, lamella bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than autobone without stemcell. there were significant differences in bone volume between 2 and 4 weeks (p<0.05). In summary, the autobone with stem cells had well-formed, newly formed bone and neovasculization, compared with the autobone without stem cells (esp. 2 weeks and 4 weeks) The findings of this experimental study indicate that the use of a mixture of mesenchymal stem cell yielded good results in osteogenesis and bone volume comparable with that achieved by autogenous bone. Therefore, this application of this promising new sinus floor elevation method for implants with tissue engineering technology deserves further study.

Rapid deterioration of preexisting renal insufficiency after autologous mesenchymal stem cell therapy

  • Kim, Jun-Seop;Lee, Jong-Hak;Kwon, Owen;Cho, Jang-Hee;Choi, Ji-Young;Park, Sun-Hee;Kim, Chan-Duck;Kim, Yong-Jin;Kim, Yong-Lim
    • Kidney Research and Clinical Practice
    • /
    • v.36 no.2
    • /
    • pp.200-204
    • /
    • 2017
  • Administration of autologous mesenchymal stem cells (MSCs) has been shown to improve renal function and histological findings in acute kidney injury (AKI) models. However, its effects in chronic kidney disease (CKD) are unclear, particularly in the clinical setting. Here, we report our experience with a CKD patient who was treated by intravenous infusion of autologous MSCs derived from adipose tissue in an unknown clinic outside of Korea. The renal function of the patient had been stable for several years before MSC administration. One week after the autologous MSC infusion, the preexisting renal insufficiency was rapidly aggravated without any other evidence of AKI. Hemodialysis was started 3 months after MSC administration. Renal biopsy findings at dialysis showed severe interstitial fibrosis and inflammatory cell infiltration, with a few cells expressing CD34 and CD117, 2 surface markers of stem cells. This case highlights the potential nephrotoxicity of autologous MSC therapy in CKD patients.

The Effect of Mesenchymal Stem Cells on the Activation of Dendritic Cells in the Cell Culture Insert System (세포배양삽입체계(Cell Culture Insert System)에서 중간엽 줄기세포(Mesenchymal Stem Cell)가 수지상세포(Dendritic Cell)의 활성화에 미치는 영향)

  • Kim, Kee Won;Park, Suk Young;Lee, Kyung Bock;Kim, Hyun-su
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • Background: Bone marrow mesenchymal stem cells (MSC) inhibit the immune response of lymphocytes to specific antigens and dendritic cells (DC) are professional antigenpresenting cells whose function is to present antigen to naive T-lymphocytes with high efficiency and play a central role in the regulation of immune response. We studied the effects of MSC on DC to evaluate the relationship between MSC and DC in transplantation immunology. Methods: MSC were expanded from the bone marrow and DC were cultured from peripheral blood mononuclear cells (PBMNC) of 6 myelogenous leukemia after achieving complete response. Responder cells isolated from PBMNC and lysates of autologous leukemic cells are used as tumor antigen. The effect of MSC on the DC was analyzed by immunophenotype properties of DC and by proliferative capacity and the amount of cytokine production with activated PBMNC against the allogeneic lymphocytes. Also, cytotoxicity tests against leukemic cells studied to evaluate the immunologic effect of MSC on the DC. Results: MSC inhibit the CD83 and HLA-class II molecules of antigen-loaded DC. The proliferative capacity and the amount of INF-$\gamma$ production of lymphocytes to allogeneic lymphocytes were decreased in DC co-cultured with MSC. Also the cytotoxic activity of lymphocytes against leukemic cells was decreased in DC co-cultured with MSC. Conclusion: MSC inhibit the activation and immune response of DC induced by allogeneic or tumor antigen.

In Vivo Stem Cell Imaging Principles and Applications

  • Seongje Hong;Dong-Sung Lee;Geun-Woo Bae;Juhyeong Jeon;Hak Kyun Kim;Siyeon Rhee;Kyung Oh Jung
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.363-375
    • /
    • 2023
  • Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, in vivo bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged in vivo through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of in vivo molecular imaging for application of stem cell research.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia

  • Safi, Ihab Nabeel;Hussein, Basima Mohammed Ali;Al-Shammari, Ahmed Majeed
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.3
    • /
    • pp.242-257
    • /
    • 2022
  • Purpose: This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods: Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 or 90 days). Each subgroup (20 implants) was subdivided into 4 groups (without cells, PDLSC sheets, BMMSC sheets, and co-culture cell sheets). All groups underwent histological testing involving haematoxylin and eosin staining and immunohistochemistry, stereoscopic analysis to measure the PDL width, and field emission scanning electron microscopy (FESEM). The natural lower central incisors were used as controls. Results: The BMMSCs co-cultured with PDLSCs generated a well-formed PDL tissue that exhibited positive periostin expression. Histological analysis showed that the implantation of coated (Ti and zirconia) dental implants without a cell sheet resulted in a well-osseointegrated implant at both healing intervals, which was confirmed with FESEM analysis and negative periostin expression. The mesenchymal tissue structured from PDLSCs only or co-cultured (BMMSCs and PDLSCs) could form a natural periodontal tissue with no significant difference between Ti and zirconia implants, consequently forming a biohybrid dental implant. Green fluorescence for periostin was clearly detected around the biohybrid implants after 45 and 90 days. FESEM showed the invasion of PDL-like fibres perpendicular to the cementum of the bio-hybrid implants. Conclusions: β-TCP-coated (Ti and zirconia) implants generated periodontal tissue and formed biohybrid implants when mesenchymal-tissue-layered cell sheets were isolated from PDLSCs alone or co-cultured BMMSCs and PDLSCs.

Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway

  • Yu, Shin-Hye;Kim, Soomin;Kim, Yujin;Lee, Seo-Eun;Park, Jong Hyeok;Cho, Gayoung;Ha, Jong-Cheon;Jung, Hahnsun;Lim, Sang-Min;Han, Kyuboem;Lee, Hong Kyu;Kang, Young Cheol;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.136-141
    • /
    • 2022
  • Inflammation is one of the body's natural responses to injury and illness as part of the healing process. However, persistent inflammation can lead to chronic inflammatory diseases and multi-organ failure. Altered mitochondrial function has been implicated in several acute and chronic inflammatory diseases by inducing an abnormal inflammatory response. Therefore, treating inflammatory diseases by recovering mitochondrial function may be a potential therapeutic approach. Recently, mitochondrial transplantation has been proven to be beneficial in hyperinflammatory animal models. However, it is unclear how mitochondrial transplantation attenuates inflammatory responses induced by external stimuli. Here, we isolated mitochondria from umbilical cord-derived mesenchymal stem cells, referred as to PN-101. We found that PN-101 could significantly reduce LPS-induced mortality in mice. In addition, in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 macrophages, PN-101 attenuated LPS-induced increase production of pro-inflammatory cytokines. Furthermore, the anti-inflammatory effect of PN-101 was mediated by blockade of phosphorylation, nuclear translocation, and trans-activity of NFκB. Taken together, our results demonstrate that PN-101 has therapeutic potential to attenuate pathological inflammatory responses.

THE EFFECTS OF BIO-$OSS^{(R)}$ AS A SCAFFOLDS DURING SINUS BONE GRAFT USING MESENCHYMAL STEM CELLS IN RABBIT (가토에서 자가유래 골아줄기세포를 이용한 상악동 골 이식술시 비계체로서 Bio-$Oss^{(R)}$의 효과에 관한 연구)

  • Lee, Jun;Sung, Dae-Hyuk;Choi, Jae-Young;Choi, Sung-Rym;Cha, Su-Ryun;Jang, Jae-Deog;Kim, Eun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.405-418
    • /
    • 2007
  • Mesenchymal stem cells(MSCs) have been though to be multipotent cells that can replicate that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. Especially, scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Selection of a matrix carrier imvolves consideration of the matrix's role as a scaffold for physical support and host tissue integration as well as its ability to support of synergize the osteoinductive program of the implanted mesenchymal stem cell. The aim of this study is to evaluate the effect of autobone and Bio-$Oss^{(R)}$ to adherent mesenchymal stem cells as scaffolds on sinus augmentation with fibrin glue mixture in a rabbit model. 16 New Zealand White rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. Cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, the animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, autobone scaffolds group showed integrated graft bone with host bone from sinus wall. At 2 and 4 weeks, it showed active newly formed bone and neovascularization. At 8 weeks, lamellae bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than Bio-$Oss^{(R)}$ scaffolds group. there were significant differences in bone volume between 4 and 8 weeks(p<0.05).