• Title/Summary/Keyword: Mercury removal

Search Result 73, Processing Time 0.021 seconds

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

A Study on the Performance Prediction of Low Temperature Thermal Desorption System (저온 수처리장치 열교환기의 열전달 특성에 관한 연구)

  • Lee, C.T.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.76-81
    • /
    • 2009
  • Thermal desorption systems are designed to remove organic compounds from solid matrices such as soils, sludges and filter cakes without thermally destroying them. It is a separation technology, not a destruction technology. Since it is a thermal process, there is a common belief that temperature is the only significant parameter to be monitored. While it is true that better removal efficiencies are usually achieved at higher temperatures, other factors must be considered. Since the process is governed by mass transfer, heating time and the amount of mixing are also key parameters in optimizing removal efficiency. Thermal desorption have been successfully used for just about every organic contaminant found to date. It has also been used to remove mercury. In the present study, the numerical simulation has been performed to investigate the characteristics of heat transfer of LTTD(low temperature thermal desorption). The commercial software, AMESIM was applied for analyzing the heat transfer process in the LTTD.

  • PDF

The utilization of waste seashell for high temperature desulfurization

  • Kim, Young-Sik;Kim, Taek-Geun;Sim, Eon-Bong;Seo, Jeong-Min
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.66-71
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between 600 and 800$^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

Reaction of $H_2S$ with Sorbents of Waste Seashell

  • Kim, Young-Sik;Kim, Taek-Gyun;Lee, Yong-Du;Shim, Eon-Bong;Jung, Jong-Hyeon
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.378-380
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream, The sulphidation of waste seashells with H$_2$S was studied in a thermogravimetric analyzer at temperature between 600 and 800${\circ}$C . The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the H2S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

A Study on Preparation and Reactivity of Zinc-based Sorbents for H2S Removal (H2S제거를 위한 아연계 탈황제 제조 및 반응특성 연구)

  • Lee, Chang Min;Yoon, Yea Il;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.183-189
    • /
    • 1999
  • Zinc-based sorbents for $H_2S$ removal were prepared. The reactivity of sorbents was investigated by the successive cycles of sulfidation-regeneration at $650^{\circ}C$ in a fixed bed reactor. The desulfurization sorbents were prepared with granulation method to produce a spherical pellet with good attrition resistance. The fresh and reacted sorbents were characterized by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) and the characteristics of sorbents on calcination conditons were analysed by Mercury Porosimetery and BET. The reactivity of sorbents decreased as the number of sulfidation-regeneration cycle increased. It is due to the zinc loss and the increase of the diffusion resistance by sintering, cracking and spalling of sorbents at the high temperature.

  • PDF

A Study on Heavy Metal Removal Using Alginic Acid (알긴산을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2007
  • A study on the removal of heavy metals using alginic acid, a kind of polysaccharides, was performed. Alginic acid adsorbed 480 mg Pb/g dry mass at pH 4, which was about twice as high as uptake capacity of other biosorbents. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and the experimental data well fitted to model equation. The adsorption of lead ions was an endothermic process since binding strength increased with temperature. The effect of alkali metal ions ($Ca^{2+}$ and $Mg^{2+}$) on lead sorption capacity was negligible and most adsorption process was completed in 30min. The uptake capacity of other metals such as, copper, mercury, strontium, and cesium ions using alginic acid was also investigated.

  • PDF

Adsorption isotherm and kinetics analysis of hexavalent chromium and mercury on mustard oil cake

  • Reddy, T. Vishnuvardhan;Chauhan, Sachin;Chakraborty, Saswati
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • Adsorption equilibrium and kinetic behavior of two toxic heavy metals hexavalent chromium [Cr(VI)] and mercury [Hg(II)] on mustard oil cake (MOC) was studied. Isotherm of total chromium was of concave type (S1 type) suggesting cooperative adsorption. Total chromium adsorption followed BET isotherm model. Isotherm of Hg(II) was of L3 type with monolayer followed by multilayer formation due to blockage of pores of MOC at lower concentration of Hg(II). Combined BET-Langmuir and BET-Freundlich models were appropriate to predict Hg(II) adsorption data on MOC. Boyd's model confirmed that external mass transfer was rate limiting step for both total chromium and Hg(II) adsorptions with average diffusivity of $1.09{\times}10^{-16}$ and $0.97m^2/sec$, respectively. Desorption was more than 60% with Hg(II), but poor with chromium. The optimum pH for adsorptions of total chromium and Hg(II) were 2-3 and 5, respectively. At strong acidic pH, Cr(VI) was adsorbed by ion exchange mechanism and after adsorption reduced to Cr(III) and remained on MOC surface. Hg(II) removal was achieved by complexation of $HgCl_2$ with deprotonated amine ($-NH_2$) and carboxyl (COO-) groups of MOC.

Chitosan for the Removal of Mercury, Hg (수중에서 카이토산에 의한 수은 제거)

  • Seok, Kyu-Jin
    • Journal of Aquaculture
    • /
    • v.5 no.2
    • /
    • pp.177-182
    • /
    • 1992
  • Experiments were conducted with goldfish exposed to various levels of mercuric chloride(control group) and mercuric chloride with chitosan (experimental group). Dilutions of these two solutions were made in the concentration ranges 0.6 to 1.0 $mg/{\ell}$ and 1.2 to 2.0 $mg/{\ell}$, respectively. Fifty percent lethal concentration of mercuric chloride($LC_{50}$) for 48 hours with the species was between 0.6 and 0.7 $mg/{\ell}$. Exposure of goldfish to mercury produced a marked, dose-dependent mortality with elevation of concentration (P<0.05). However, at each concentration of mercuric chloride treated with chitosan, mortality decreased significantly compared to control group (P<0.05).

  • PDF

Removal and Decomposition of Organochlorine Compounds in Water Using UV Irradiation (자외선에너지를 이용하여 물속에 함유된 유기염소계 화합물의 분해 및 제거)

  • Kim, Jong Hyang
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.30-34
    • /
    • 1999
  • Photolysis behavoirs of pesticides(Chlorothalonil and Endosulfan) over UV irradiation UV irradiation with pH 3.0 and irradiation with 3.5% salt were studied. The analyses of pesticides were carried out using gas chromatograph with an electron-capture detector, total organic carbon, and Ion chromatograph, respectively. The reactions were conducted in a alumium annular reactor equipped with a low pressure mercury multilamp ($8W{\times}6$) and initial concentration was 10 ppm. Chlorothalonil was almost photodegraded by UV irradiation, UV irradiation with pH 3.0 and 3.5% salt within 30 min of reaction time. Endosulfan-${\alpha}$,${\beta}$(100%) were photodegraded to 38% of Endosulfan-${\alpha}$ and 25% of Endisulfan-${\beta}$ by UV irradiation. Endosulfan-${\alpha}$(83%) was photodegraded to 66% by UV irradiation, 70% by UV irradiation and pH 3.0 and 75% by UV irradiation and 3.5% salt. Endosulfan-${\beta}$(16%) was photodegraded to 80% by UV irradiation, 98% by UV irradiation and pH 3.0 and 90% by UV irradiation and 3.5% salt.

  • PDF