• Title/Summary/Keyword: Mercury measurement

Search Result 90, Processing Time 0.03 seconds

Automated Velocity Measurement Technique for Unconsolidated Marine Sediment (해양퇴적물의 자동음파전달속도 측정장치)

  • Kim, Dae-Choul;Kim, Gil-Young;Seo, Young-Kyo;Ha, Deock-Ho;Ha, In-Chul;Yoon, Young-Seok;Kim, Jeng-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.400-404
    • /
    • 1999
  • The conventional mercury delay method to measure compressional wave velocity of unconsolidated sediment is inconvenient because the signal must be analyzed on the oscilloscope and the mercury column has to be calibrated between measurements. We developed an automated compressional wave velocity measurement technique by connecting an oscilloscope and a PC with a GPIB (General Purpose Interface Bus) card. The GPIB card buses signals from the oscilloscope to the PC where the signal from a sample is analyzed and compared to the input pulse thereby the compressional wave velocity of the sample is computed and recorded automatically. Differences between the mercury delay method and the automated measurement technique are negligible except the slightly greater velocity in the automated measurement technique. We concluded that the new technique can be used to measure the velocity for unconsolidated marine sediment. It also has an advantage to calculate sediment attenuation through the processing of waveform using the spectral ratio technique.

  • PDF

Characteristics of Gaseous Dissolved Mercury and Total Mercury in Yangsuri Marsh of Korea (양수리 용늪의 용존 수은 및 총수은 농도 특성에 대한 연구)

  • Yang, Ji-Hye;Han, Young-Ji;Kim, Pyung-Rae;Park, Sang-Young;Seo, Yong-Seok;Lee, Jong-Hwan;Kim, Moon-Kyung;Yi, Seung-Muk;Cho, Kyung-Deok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.801-809
    • /
    • 2012
  • Long-term measurement of total mercury (TM) and dissolved gaseous mercury (DGM) were performed in Yangsuri marsh. Average TM and DGM concentrations were $2.0{\pm}2.0$ ng/L and $15.0{\pm}2.8$ pg/L, respectively, indicating that only 2.6% of TM existed as the form of DGM in Yangsuri marsh. While TM did not show the seasonal variation a statistically high DGM concentration was observed in warm season, indicating that DGM was effectively produced by strong solar radiation and high water temperature. There was no relationship between TM and DGM concentrations in Yangsuri marsh, as observed in other studies. DGM in Yangsuri marsh was supersaturated for most of sampling period; therefore, one can conclude that $Hg^0$ in water surface can readily volatilize to the atmosphere.

Comparison by Measurement Sites in Temperature of Neonates : Ear-based rectal, Rectal, Axilla, Abdominal Temperature (측정부위별 신생아의 체온 비교 : 고막기준 직장체온, 직장체온, 액와체온, 복부체온)

  • 김화순;안영미
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.4
    • /
    • pp.903-916
    • /
    • 1999
  • The purpose of this study was to compare the ear-based rectal temperature measured with a tympanic thermometer with the rectal temperature measured with a glass mercury thermometer in order to test the accuracy of tympanic thermometer and to determine relationship among rectal, axilla, and abdominal temperature in neonates. The samples consisted of thirty four neonates admitted to the neonatal intensive care unit and nursery at an university affiliated hospital. The mean age of the subjects was 4.9 days. The ear-based rectal temperatures were taken with a tympanic thermometer in rectal mode (First Temp Genius 3000). Rectal and axilla temperatures were taken with a glass mercury thermometer, Abdominal temperature was continuously monitored with the probe connected to the servo controller of incubator. The results of the study can be summarized as follows : 1. Intrarater comparison : Agreement between the first and the second ear-based rectal temperature was 97% within 0.1$^{\circ}C$. 2. Comparison of ear-based rectal temperature and the rectal temperature from a glass mercury thermometer : ear-based rectal temperature ranged from 36.95$^{\circ}C$d to 37.95$^{\circ}C$, with a mean of 37.58$^{\circ}C$(SD=0.22$^{\circ}C$). Rectal temperature from a glass mercury thermometer ranged from 36.2$0^{\circ}C$ to 37.2$0^{\circ}C$, with a mean 36.75$^{\circ}C$(SD=0.29). The mean difference between both temperatures was 0.84$^{\circ}C$. The correlation coefficient between both temperatures was r=0.77(p=0.00). 3. Comparison of rectal and axilla temperature : Axilla temperature ranged from 35.8$0^{\circ}C$ to 37.1$0^{\circ}C$, with a mean of 36.55$^{\circ}C$. The mean absolute difference between the rectal and axilla temperature was 0.23$^{\circ}C$. The correlation coefficient between rectal and axilla was r=0.67. 4. Comparison of axilla and abdominal temperature : Abdominal temperature ranged from 36.2$0^{\circ}C$ to 37.0$0^{\circ}C$, with a mean of 36.58$^{\circ}C$. The mean absolute difference between axilla and abdominal temperature was only -0.03$^{\circ}C$. Findings of this study suggest that ear-based rectal temperature overestimates the actual rectal temperatures in neonates. Therefore, the interchangeble use of both temperatures in clinics seems problematic. The site offset(adjustment value) programmed in rectal mode of the tympanic thermometer needs to be readjusted. Choosing one optimal site for temperature measurement for each patient, and using the specific site consistently would result in more consistent measurements of changes in body temperature, and thus can be more effective in diagnosing fever or hypothermia.

  • PDF

Investigation of Standard Error Range of Non-Contact Thermometer by Environment (외부 환경 변화에 의한 비 접촉 체온계의 오차 범위 측정)

  • Kim, Jeongeun;Park, Sangwoong;Choi, Heakyung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.307-321
    • /
    • 2020
  • Purpose : A person infected by SARS-CoV2 may present various symptoms such as fever, pain in lower respiratory tract, and pneumonia. Measuring body temperature is a simple method to screen patients. However, changes in the surrounding environment may cause errors in infrared measurement. Hence, a non-contact thermometer controls this error by setting a correction value, but it is difficult to correct it for all environments. Therefore, we investigate device error values according to changes in the surrounding environment (temperature and humidity) and propose guidelines for reliable patient detection. Methods : For this study, the temperature was measured using three types of non-contact thermometers. For accurate temperature measurement, we used a water bath kept at a constant temperature. During temperature measurement, we ensured that the temperature and humidity were maintained using a thermo-hygrometer. The conditions of the surrounding environment were changed by an air conditioner, humidifier, warmer, and dehumidifier. Results : The temperature of the water bath was measured using a non-contact thermometer kept at various distances ranging from 3~10 cm. The value measured by the non-contact thermometer was then verified using a mercury thermometer, and the difference between the measured temperatures was compared. It was observed that at normal surrounding temperature (24 ℃), there was no difference between the values when the non-contact thermometer was kept at 3 cm. However, as the distance of the non-contact thermometer was increased from the water bath, the recorded temperature was significantly different compared with that of mercury thermometer. Moreover, temperature measurements were conducted at different surrounding temperatures and the results obtained significantly varied from when the thermometer was kept at 3 cm. Additionally, it was observed that the effect on temperature decreases with an increase in humidity Conclusion : In conclusion, non-contact thermometers are lower in lower temperature and dry weather in winter.

Comparison of Cold Vapor Atomic Absorption Spectrophotometry Analysis and EPA Method 101A for Measurement of Mercury in the Flue Gas (배출가스중 수은 측정을 위한 환원기화 원자흡광광도법과 EPA Method 101A의 비교 연구)

  • 김경희;최양일;박일수;홍지형;차준석;석광설;김대곤
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.92-93
    • /
    • 1999
  • 수은은 상온에서 액체상태로 존재하는 유일한 금속으로서, 증기압이 매우 높기 때문에 가장 쉽게 휘발될 수 있는 중금속이다. 다른 중금속들은 거의 입자 상태로 변환되기 때문에 전기 집진기 등과 같은 일반적인 입자 제어시설에서 98%이상이 제거되지만, 증기압이 매우 높은 수은은 다단계 습식 스크러버, 활성탄을 사용하는 전기집진기/습식 스크러버가 결합된 특정한 방지시설에 없는 한 거의 대부분이 그대로 배출된다.(중략)

  • PDF

Potentiometric Measurement of Standard Potential of Mercury and Ion-pair Formation Constants of Mercuric Halides in Anhydrous Ethylenediamine (에틸렌디아민 非水溶液中에서의 水銀電極의 標準電位 및 水銀鹽化鹽의 Ion-Pair 恒數測定)

  • Kim, Joon-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 1970
  • 非水溶液 Ethylenediamine 中에서 水銀電極의 標準電位 및 水銀鹽化物, $HgCl_2,\;HgBr_2,\;HgI_2$의 Ion-Pair 形成恒數를, Hg電極/$HgX_2$ 또는 $HgX_2$+NaX//亞鉛아마르감 參照電極과 같은 Cell의 構成으로서 電位差法에 依하여 測定하였다.

  • PDF

Emission Characteristics of Mercury in Zn Smelting Process (아연제련시설에서의 수은 배출특성)

  • Park, Jung-Min;Lee, Sang-Bo;Kim, Hyung-Chun;Song, Duk-Jong;Kim, Min-Su;Kim, Min-Jung;Kim, Yong-Hee;Lee, Sang-Hak;Kim, Jong-Chun;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.507-516
    • /
    • 2010
  • Stationary combustion sources such as coal-fired power plants, waste incinerators, industrial manufacturing, etc. are recognized as major sources of mercury emissions. Due to rapid economic growth, zinc production in Korea has increased significantly during the last 30 years. Total zinc production in Korea exceeded 739,000 tons in 2008, and Korea is currently the third largest zinc producing country in the world. Previous studies have revealed that zinc smelting has become one of the largest single sectors of total mercury emissions in the World. However, studies on this sector are very limited, and a large gap in the knowledge regarding emissions from this sector needs to be bridged. In this paper, Hg emission measurements were performed to develop emission factors from zinc smelting process. Stack sampling and analysis were carried out utilizing the Ontario Hydro method and US EPA method 101A. Preliminary data showed that $Hg^0$ concentrations in the flue gas ranged from 4.56 to $9.90\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$, Hg(p) concentrations ranged from 0.03 to $0.09\;{\mu}g/m^3$ with an average of $0.04\;{\mu}g/m^3$, and RGM concentrations ranged from 0.23 to $1.17\;{\mu}g/m^3$ with an average of $6.40\;{\mu}g/m^3$. To date, emission factors of 7.5~8.0 g/ton for Europe, North America and Australia, and of 20 or 25 g/ton for Africa, Asia and South America are widely accepted by researchers. In this study, Hg emission factors were estimated using the data measured at the commercial facilities as emissions per ton of zinc product. Emission factors for mercury from zinc smelting pross ranged from 4.32 to 12.96 mg/ton with an average of 8.31 mg/ton. The emission factors that we obtained in this study are relatively low, considering Hg contents in the zinc ores and control technology in use. However, as these values are estimated by limited data of single measurement of each, the emission factor and total emission amount must be updated in future.

The analysis of neutral particle in Mercury discharge lamp

  • Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2421-2423
    • /
    • 2005
  • In this paper, we introduced a LIF measurement method and summarized the theoretical side. When an altered wavelength of laser and electric power, lamp applied electric power, we measured the relative density of the metastable state in mercury after observing a laser induced fluorescence signal of 404.8nm and 546.2nm, and confirmed the horizontal distribution of plasma density in the discharge lamp. The results confirmed the resonance phenomenon regarding the energy level of atoms along a wavelength change, and also confirmed that the largest fluorescent signal in 436nm, and that the density of atoms in 546.2nm $(6^3S_1{\rightarrow }6^3P_2)$ were larger than 404.8nm $(6^3S_1{\rightarrow}6^3P_1)$. According to the increase of lamp applied electric power, plasma density increased, too. When increased with laser electric power, the LIF signal reached a saturation state in more than 2.6mJ. When partial plasma density distribution along a horizontal axis was measured using the laser induced fluorescence method, the density decreased by recombination away from the center.

  • PDF

Development and Mass Production Potential of a Novel 5-side Photodiode LED Viewing Angle Measurement System (5면 Photodiode를 이용한 양산 공정용 LED 지향각 측정 시스템개발에 관한 연구)

  • Kim, Dee-Wan;Park, Chan-Hee;Kim, Keun-Sik;Kim, Cheol-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.623-631
    • /
    • 2011
  • Light emitting diodes (LEDs) which can produce uniform luminescence need a very difficult and complex procedure because LEDs have strong and straight optical property. One of the major parameters for LED production is the determination of the viewing angle. However, in the present, there is still no available production technology to measure LED viewing angle and optical property. In this study, we developed a five-side LED viewing angle and optical property measurement system, having a source meter that uses a high speed switching photo relay instead of a mercury relay. This new measurement system can measure the viewing angle at a very high accuracy of ${\pm}0.66^{\circ}$. This new technology presents a great potential for fast and reliable LED mass production, which can significantly cut down the cost from savings in production time.

The Development of a Cuff for the Accuracy Enhancement of the Sphygmomanometer

  • Kim, Won-Ki;Shin, Ki-Young;Mun, Joung-Hwan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.30-35
    • /
    • 2006
  • The purpose of this study is to develop a new cuff to improve the accuracy of blood pressure measurement, and to evaluate the performance of the developed system. We added a small bladder to the normal cuff, which we refer to as the double bladder system. The system that we developed for blood pressure measurement was based on the oscillometric method using a double bladder. This system was developed in order to reduce the oscillation noise and to amplify the signal of pure blood pressure. An oscillometric signal database based on the developed system was evaluated according to the ANSI/AAMI/SP10-1992 standard. The correlation coefficients between the cuff of the double bladder and the normal cuff were 0.98 for systolic pressure and 0.94 for diastolic pressure. The mean differences and the standard deviations between the average blood pressure obtained from a mercury manometer and that obtained from an automated sphygmomanometer were -0.7mmHg and 4.9mmHg for systolic, and -1.4mmHg and 5.4mmHg for diastolic pressure. We conclude that the proposed double bladder-based cuff system improves the accuracy of oscillometric blood pressure measurement. The developed system reduces the range of error by about $44{\sim}62%$ for systolic pressure and about $6{\sim}21%$ for diastolic pressure compared to the most recently developed, commercially available sphygmomanometers.