• Title/Summary/Keyword: Meniscus shell

Search Result 4, Processing Time 0.019 seconds

The Analysis of Dynamic Pressure in the Molten Flux near the Meniscus during Mold Oscillation for the Continuous Casting of Steel (강의 연속주조시 Mold Oscillation에 따른 Flux층 내의 동적 압력변화 해석)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.26-33
    • /
    • 2004
  • The pressure of the mold flux acting on the meniscus shell was investigated through the coupling analysis of heat transfer in the mold and fluid flow in the flux caused by the mold oscillation. Finite element method was employed to solve the conservation equation associated with appropriate boundary conditions. As reported by previous workers, the axial pressure is positive on the negative strip time and negative on the positive strip time. A maximum pressure is predicted toward the top of the meniscus shell which has the thin shell arid a maximum value is in proportion to the relative mold oscillation velocity. The relative mold oscillation velocity was changed by the effect of meniscus level fluctuation. Therefore the pressure of the mold flux acting on the meniscus shell was different each cycle of the mold oscillation due to the irregularity of relative mold oscillation velocity.

An Assessment on the Formation of Oscillation Mark of the Continuously Casted Steel Slabs (연속주조된 강재 슬래브 표면의 Oscillation Mark 형성에 관한 평가)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.257-267
    • /
    • 2003
  • In early solidification during the continuous casting of steel slabs, the formation of oscillation marks on the surface of slabs was mainly affected by carbon contents and casting conditions. The control of oscillation mark is required for the HCR(Hot Charged Rolling) process because the deep oscillation marks seriously deteriorate the surface qualities of steel slabs. The metallographic study has revealed that the oscillation mark can be classified principally according to the presence or absence of a small 'subsurface hook' and the depth of the oscillation marks in the subsurface structure at the basis of individual oscillation marks. The subsurface hook of oscillation marks was either straight or curved. When the amount of overflow was small and the subsurface hook was formed in the top of oscillation marks, the subsurface hook was straight and the oscillation mark was shallow. The oscillation marks without subsurface hook have small early solidification shell and were formed wide. The actual negative strip time$(t_N)$ was changed by the effect of meniscus level fluctuation Therefore irregular early solidification shell and oscillation mark were formed.

Preparation of Porous Nanostructures Controlled by Electrospray

  • Nguyen, Dung The;Nah, In Wook;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.627-631
    • /
    • 2015
  • Various solid structures were prepared by electrospray technique. In this process, liquid flows out from a capillary nozzle under a high electrical potential and is subjected to an electric field, which causes elongation of the meniscus to form a jet. In our study, by controlling the amount of polyvinyl pyrrolydone in precursor solution, the jet either disrupted into droplets for the formation of spherical particles or was stretched in the electric field for the formation of fibers. During the electrospray process, the ethanol solvent was evaporated and induced the solidification of precursors, forming solid particles. The evaporation of ethanol solvent also enhanced the mass transport of solutes from the inner core to the solid shell, which facilitated fabrication of porous and hollow structure. The network structures were also prepared by heating the collector.

The Solidification Characteristics of Styronaphthalene Pattern Materials (스티로나프타린 모형재료의 응고특성)

  • Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.47-51
    • /
    • 2003
  • This experimental study was carried out to investigate the solidification characteristics of polystyrene added styronaphthalene pattern materials using various castability test methods. The styronaphthalene showed an excellent filling capacity and shaping behavior having about 0.2 mm meniscus radius. The shell thickness of styronaphthalene showing smooth wall at the solid/liquid interface increased with the increasing of polystyrene addition. The solidification microstructure of styronaphthalene showed a typical thin ribbon reinforced composite structure, which has fibrous amorphous skeleton of polystyrene and crystalline naphthalene. From the results of this study, it was found that the polystyrene added styronaphthalene showed a precision shaping behavior as disposable pattern material under the atmospheric condition.