• Title/Summary/Keyword: Membrane water transfer

Search Result 129, Processing Time 0.028 seconds

Improving Microalgal Biomass Productivity and Preventing Biofouling in Floating Marine Photobioreactors via Sulfonation of Selectively Permeable Membranes (부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상)

  • Kim, Kwangmin;Lee, Yunwoo;Kim, Z-Hun;Park, Hanwool;Jung, Injae;Park, Jaehoon;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • The purpose of this study was to inhibit biofouling on a selectively permeable membrane (SPM) and increase biomass productivity in marine photobioreactors (PBRs) for microalgal cultivation by chemical treatment. Surfaces of a SPM, composed of polyethylene terephthalate (PET), was sulfonated to decrease hydrophobicity through attaching negatively charged sulfonic groups. Reaction time of sulfonation was varied from 0 min to 60 min. As the reaction time increased, the water contact angle value of SPM surface was decreased from $75.5^{\circ}$ to $44.5^{\circ}$, indicating decrease of surface hydrophobicity. Furthermore, the water permeability of sulfonated SPM was increased from $5.42mL/m^2/s$ to $10.58mL/m^2/s$, which reflects higher nutrients transfer rates through the membranes, due to decreased hydrophobicity. When cultivating Tetraselmis sp. using 100-mL floating PBRs with sulfonated SPMs, biomass productivity was improved by 34% compared with the control group (non-reacted SPMs). In addition, scanning electron microscopic observation of SPMs used for cultivation clearly revealed lower degree of cell attachment on the sulfonated SPMs. These results suggest that sulfornation of a PET SPM could improve microalgal biomass productivity by increasing nutrients transfer rates and inhibiting biofouling by algal cells.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Study on the Durability Characteristics of the PEM Fuel Cells having Gas Diffusion Layer with Different Micro Porous Layer Penetration Thicknesses (기체확산층의 미세다공층 침투 깊이에 따른 고분자 전해질형 연료전지의 내구성능 저하 분석에 관한 연구)

  • Park, Jaeman;Oh, Hwanyeong;Cho, Junhyun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Durability characteristics of Gas Diffusion Layer(GDL) is one of the important issues for accomplishing commercialization of Proton Exchange Membrane Fuel Cell(PEMFC). It is strongly related to the performances of PEMFC because one of the main functions of GDL is to work as a path of fuel, air and water. When the GDL does not work on their proposed functions due to the degradation of durability, mass transfer in PEMFC is disturbed and it might cause the flooding phenomenon. Thus, investigating the durability of GDL is important and understanding the GDL degradation process is needed. In this study, electrochemical degradation with carbon corrosion is introduced. The carbon corrosion experiment is carried out with GDLs which have different MPL penetration thicknesses. After the experiment, the amount of degradation of GDL is measured with various properties of GDL such as weight, thickness and performance of the PEMFC. The degraded GDL shows loss of their properties.

$CO_2$ Separation in Pre-Combustion using Principles of Gas hydrate Formation (연소전 탈탄소화 적용을 위한 $CO_2/H_2$ 하이드레이트 형성 및 분리 연구)

  • Lee, Hyun-Ju;Lee, Ju-Dong;Lee, Yoon-Seok;Lee, Eun-Kyung;Kim, Soo-Min;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.698-698
    • /
    • 2009
  • 화력발전이 많은 비중을 차지하는 전력생산 산업은 온실가스($CO_2$)의 최대 배출 원으로 알려져 있으며 증가하는 전력 수요 뿐 만 아니라 다가오는 기후변화협약에 대응하기 위하여 $CO_2$ 회수 및 공정 개선에 관한 연구가 많이 수행되고 있다. 특히 현재 연구되고 있는 전력분야의 대표적인 $CO_2$ 회수기술은 연소 후 포집(Post-combustion capture), 순산소 연소(Oxy-fuel combustion), 연소전 탈탄소화(Pre-combustion) 3가지로 구분된다. 이중 연소전 탈탄소화 기술은 석탄가스화복합발전(IGCC) 기술과 연계하여 $CO_2$를 회수할 수 있는 방법으로 가스화 된 석탄가스에 Water-Gas Shift 반응과, $CO_2$ 분리로 얻어진 탈 탄소 연료를 통해서 전력을 생산한다. 이 기술의 핵심은 생성된 $CO_2/H_2$ 복합가스로부터 $CO_2$를 분리하는 공정으로 차세대 회수 기술로는 Membrance Reactor, SOFC, Oxygen Ion Transfer Membrane(OTM), 그리고 가스 하이드레이트가 있다. 이중 가스 하이드레이트는 $CO_2$의 회수 뿐 만 아니라 처리 기술에도 적용 가능하지만 우리나라에는 이에 관한 기술이 전무한 형편이다. 본 연구에서는 가스 하이드레이트 형성원리를 이용하여 정온 정압 조건에서 $CO_2/H_2$ 하이드레이트를 제조하였으며 특히, 하이드레이트 형성 촉진제인 THF(Tetrahydrofuran)를 첨가하여 THF 농도에 따른 상평형 및 속도론 실험을 수행 하였다. 이러한 연구는 연소전 탄소화 기술에서의 $CO_2$ 회수 분리에 대한 핵심 연구임과 동시에 탄소배출권 규제에 실질적인 기여를 할 수 있을 것으로 사료된다.

  • PDF

A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining (싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Chang, Soo-Ho;Bae, Gyu-jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2006
  • This study investigates the failure mechanism and load-carrying capacity of a single-shell lining which has no disturbance in transfer of shear force, with respect to a conventional double-shell lining which has separation between layers of shotcrete lining and secondary concrete lining by water-proof membrane. In order to evaluate the capacity, a 2-D numerical investigation is preliminarily carried out and then real-scale loading tests with tunnel lining section specimens are performed on the condition given by the numerical investigation. In the test, a concentrated load is applied for considering a released ground load or rock wedge load. Through this study, it appears that the single-shell lining takes the load-bearing capacity 20% higher than in case of the double-shell lining. In addition, a possibility of a composite single-shell shotcrete layer composed by multiple bonded layers partly involving different contents of high-capacity additives is shown thereby leading to use of less amount of the high-capacity additives on the condition of taking a similar load-bearing capacity.

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field (캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.613-620
    • /
    • 2021
  • A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.

The Evaluation of Artificial Lung Using Blood Substitutes (대체혈액을 이용한 인공폐의 평가에 관한 연구)

  • Kim K.B.;Hong S C.;Kim M.H.;Jheong G.R.;Lee S.C.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.311-320
    • /
    • 2000
  • In this paper a newly designed oxygenator module was used to perform the experiments for pressure drop and oxygen transport in order to evaluate the efficiency of the artificial lung. Also, distilled water. sodium sulfite solutions used in this experiment were evaluated for the performance of other artificial lungs. Substituted bloods have many advantages over whole blood in studying pressure drop and oxygen uptake. They are relatively inexpensive, and require fewer variables to be controlled. Furthermore, deoxygenation is not necessary when those solutions are used. In addition to these advantages. assays and interpretation of the experimental results are relatively easy. In the case of using the sodium sulfite solution having the same oxygen partial pressure as whole blood. the oxygen transfer rate of the sodium sulfite solution was basically same as that of whole blood. It was concluded in evaluating the function of artificial lungs that the sodium sulfite solution was suited for measuring oxygen transfer rate. In our module, artificial blood was flowed into the outside of hollow fiber membrane. The artificial lung created in this experiment showed that pressure drop was reduced to $1/3\~1/6$ of that compared to the inside-flow case.

  • PDF

Optimization of Separation Process of Bioflavonoids and Dietary Fibers from Tangerine Peels using Hollow Fiber Membrane (중공사 막을 이용한 감귤 과피 bioflavonoids 분리 및 식이 섬유 회수 공정 최적화)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.151-160
    • /
    • 1998
  • Tangerine peel is mostly discarded as waste in citrus processing. However, tangerine peel contains besides dietary fibers bioflavonoids such as naringin and hesperidin which act as antimicrobials and blood pressure depressants, respectively. A continuous membrane separation process was optimized for the production of bioflavonoids relative to feed flow rate, transmembrane pressure, temperature, and pH. The tangerine peel was blended with 7.5 times water volume and the extract was prefiltered through a prefiltration system. The prefiltered extract was ultrafiltered in a hollow fiber membrane system. The flux and feed flow rate didn't show any apparent correlation, but we could observe a mass-transfer controlled region of over 8 psi. When temperature increased from $9^{\circ}C\;to\;25^{\circ}C$, the flux increased about $10\;liters/m^2/min\;(LMH)$ but between $25^{\circ}C\;and\;33^{\circ}C$, the flux increased only 2 LMH. At every transmembrane pressure, the flux of pH 4.8 was the most highest and the flux at pH 3.0 was lower than that of pH 6.0, 7.0, or 9.0. Therefore, the optimum operating conditions were 49.3 L/hr. 10 psi, $25^{\circ}C$, and pH 4.8. Under the optimum conditions, the flux gradually decreased and finally reached a steady-state after 1 hr 50 min. The amount of dietary fibers in 1.0 g retentate in each separation step was analyzed and bioflavonoids concentration in each permeate was measured. The contents of total dietary fiber in the 170 mesh retentate and soluble dietary fiber in the prefiltered retentate were the highest. Naringin and hesperidin concentration in the permeate were $0.45{\sim}0.65\;mg/g\;and\;5.15{\sim}6.86\;mg/g$ respectively, being $15{\sim}22$ times and $79{\sim}93$ times higher than those in the tangerine peel. Therefore, it can be said that PM 10 hollow fiber membrane separation system may be a very effective method for the recovery of bioflavonoids from tangerine peel.

  • PDF

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.