• 제목/요약/키워드: Membrane proliferation

검색결과 304건 처리시간 0.029초

Cell attachment and proliferation of osteoblast-like MG63 cells on silk fibroin membrane for guided bone regeneration

  • Yoo, Chae-Kyung;Jeon, Jae-Yun;Kim, You-Jin;Kim, Seong-Gon;Hwang, Kyung-Gyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.17.1-17.6
    • /
    • 2016
  • Background: The aim of this study is to verify the feasibility of using silk fibroin (SF) as a potential membrane for guided bone regeneration (GBR). Methods: Various cellular responses (i.e., cell attachment, viability, and proliferation) of osteoblast-like MG63 cells cultured on an SF membrane were quantified. After culturing on an SF membrane for 1, 5, and 7 days, the attachment and surface morphology of MG63 cells were examined by optical and scanning electron microscopy (SEM), cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation was quantified using 4',6-diamidino-2-phenylindole (DAPI) fluorescence staining. Results: Optical microscopy revealed that MG63 cells cultured on the SF membrane proliferated over the 7-day observation period. The viability of cells cultured on SF membranes (SF group) and on control surfaces (control group) increased over time (P < 0.05); however, at respective time points, cell viability was not significantly different between the two groups (P > 0.05). In contrast, cell proliferation was significantly higher in the SF membrane group than in the control group at 7 days (P < 0.05). Conclusions: These results suggest that silk fibroin is a biocompatible material that could be used as a suitable alternative barrier membrane for GBR.

The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

  • Lee, So-Hyoun;Lim, Youn-Mook;Jeong, Sung In;An, Sung-Jun;Kang, Seong-Soo;Jeong, Chang-Mo;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권6호
    • /
    • pp.484-495
    • /
    • 2015
  • PURPOSE. This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS. BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (${\alpha}<.05$). RESULTS. BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION. BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.

Effect of surface-treatments on flexibility and guided bone regeneration of titanium barrier membrane

  • Kim, Jin-Tae;Kim, Byoung Soo;Jeong, Hee Seok;Heo, Young Ku;Shin, Sang-Wan;Lee, Jeong-Yol;Shim, Young Ho;Lee, Deuk Yong
    • 한국결정성장학회지
    • /
    • 제25권3호
    • /
    • pp.98-104
    • /
    • 2015
  • Titanium barrier membranes are prepared to investigate the effect of surface-treatments, such as machining, electropolishing, anodizing, and electropolishing + TiN coating, on the biocompatibility and physical properties of the membranes. The surface roughness (Ra) of the membrane decreases from machining ($0.37{\pm}0.09{\mu}m$), TiN coating ($0.22{\pm}0.09{\mu}m$), electropolishing ($0.20{\pm}0.03{\mu}m$), to anodizing ($0.15{\pm}0.03{\mu}m$). The highest ductility (24.50 %) is observed for the electropolished Ti membrane. No evidence of causing cell lysis or toxicity is found for the membranes regardless of the surface-treatments. Cell adhesion results of L-929 and MG-63 show that the machined Ti membrane exhibits the highest cell adhesion while the electropolished membrane is the best membrane for the L-929 cell proliferation after 7 days. However, no appreciable difference in MG-63 cell proliferation among variously surface-treated membranes is detected, suggesting that the electropolished Ti membrane is likely to be the best membrane due to the synergic combination of tailored flexibility and excellent fibroblast proliferation.

δ-Aminolevulinic acid (ALA) 유도체들의 미토콘드리아 탈분극 유도에 의한 인간 섬유아세포의 세포분열 억제 (Inhibition of Proliferation of Human Fibroblast by δ-Aminolevulinic Acid (ALA) Derivatives through the Induction of Mitochondria Membrane Depolarization)

  • 전용우;한두경;이진아;조수연;장덕진
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.313-318
    • /
    • 2015
  • ${\delta}$-Aminolevulinic acid (ALA) is an endogenous metabolite formed in the mitochondria from succinyl-CoA and glycine, and plays a key role in the living body as an intermediate of the compound in the porphyrin biosynthesis pathway. ALA has been commonly used in photodynamic therapy for several years, because ALA is of interest as a biodegradable mediator, a growth regulator, and an effective agent used in dermatology. Here, we determined which ALA derivatives were the most effective for the inhibition of the cell proliferation and growth of human fibroblast. As a result, we found that the treatment of ALA derivatives including ALA, ALAP (ALA phosphate salt), MAL (Methyl 5-aminolevulinate hydrochloride salt), PBGL (phophobilinogen lactam) and PBGH (phophobilinogen-HCl) could attenuate cell proliferation of human fibroblast cells. Among them, PBGH was the most effective derivative. In addition, PBGH treatment could induce mitochondrial membrane depolarization, leading to cell death of human fibroblast. These results suggest that mitochondrial membrane depolarization induced by ALA and PBGH treatment might be responsible for inhibition of cell proliferation and death. Taken together, our results propose the possibility that PBGH can be used as one of the effective drugs in human skin disease, psoriasis.

죽역이 3T3-L1 세포의 증식 및 분화시 기저영 단백질 합성에 미치는 영향 (Effect of Bambusae Caulis in Liquamen on the Synthesis of Basement Membrane Proteins during Proliferation and Differentiation of 3T3-L 1 Cells)

  • 전훈
    • 동의생리병리학회지
    • /
    • 제17권5호
    • /
    • pp.1315-1320
    • /
    • 2003
  • The purpose of this research was to investigate effects of Bambusae Caulis in Liquamen (BCL) on the synthesis of basement membrane proteins during proliferation and differentiation of 3T3-L1 cells. BCL has been used to relieve the cough and asthma, and remove phlegm in traditional oriental medicines. In recent years. it was studied for its antiinflammatory, antiallergenic. immune-modulating and anticarcinogenic capabilities. We have previously observed that glycyrrhizin stimulates the adipose conversion of 3T3-L1 cells. To investigate effects of BCL on the basement membrane proteins during proliferation and differentiation of 3T3-L1 cells, we have analyzed synthetic amounts of basement membrane components such as type IV collagen and BM40. BCL stimulated the synthesis and secretion of type IV collagen from both 3T3-L1 preadipocytes and adipocytes. The synthesis and secretion of BM40 was not affected by BCL. The continuous addition of BCL markedly stimulated cell growth and increased cell density. These results suggest an important role for type IV collagen in adipocyte differentiation.

Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Regulates Neuroblastoma Cell Proliferation through p21

  • Jung, Heekyung;Shin, Joo-Hyun;Park, Young-Seok;Chang, Mi-Sook
    • Molecules and Cells
    • /
    • 제37권12호
    • /
    • pp.881-887
    • /
    • 2014
  • Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the $G_1$ phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the $G_1$ phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.

악관절조영술이 악관절 조직에 미치는 영향에 대한 병리조직학적 연구 (A HISTOPATHOLOGIC STUDY OF THE EFFECTS OF ARTHROGRAPHY ON THE TISSUES OF TEMPOROMANDIBULAR JOINT)

  • 조봉혜;나경수
    • 치과방사선
    • /
    • 제22권1호
    • /
    • pp.137-144
    • /
    • 1992
  • This study was performed to observe the effects of arthrography on the tissues of temporomandibular joint histopathologically. Among 17 rabbits (34 joints), 2 (4 joints) were used as normal control group, others (30 joints) were experimentally arthrographed using 0.03㎖ diatrizoate meglumine (Hypaque meglumine 60, Wintrop, U.S.A). The rabbits were sacrificed at 2-hour, 1-, 2-, 4- and 7-day after experiment and the tissues of temporomandibular joint were prepared according to the usual method for light microscopic examination. The results were as follows: 1. There were no changes of the fibrous connective tissues of the condylar fossa, the fibrous connective tissues and hyaline cartilages of the condyle, and the articular dislc 2. In 2-hour experimental group, the proliferation of the surface synovial membrane cells, the congestion and hemorrage of the vessels were observed. 3. In 1 and 2-day experimental group, minimal lymphocytes infiltration was observed with the proliferation of the surface synovial membrane cells, the congestion and hemorrage of the vessels. 4. In 4-day experimental group, the diminution of the proliferation of the surface synovial membrane cells was seen, but there was no vascular changes. 5. In 7-day experimental group, the tissues showed similar appearance to the normal control group.

  • PDF

잠두 위조 바이러스와 세포 미세구조 (Broad Bean Wilt Fabaviruses and Their Specific Ultrastructures)

  • 최홍수;조점덕;이금희;김정수
    • Applied Microscopy
    • /
    • 제31권3호
    • /
    • pp.215-222
    • /
    • 2001
  • 잠두위조바이러스(broad bean wilt virus) 5종의 분리주에 대하여 명아주 등 29종의 지표식물반응에 의한 병원성을 분류하였다. 이들 분리주에 감염된 세포에서 3종류의 서로 다른 특이한 미세구조가 관찰되었다. 첫번째 구조는 바이러스입자로 된 $1\sim2$층의 원형관(tube)이고, 둘째는 6각형의 벌집구조(comb)로서 이것은 외부모양이 원형 또는 각으로 된 구조로 구분되었으며, 셋째는 세포원형질 내에 존재하는 다량의 막구조(membrane proliferation)이었다.

  • PDF

The effects of Korean Red Ginseng-derived components on oligodendrocyte lineage cells: Distinct facilitatory roles of the non-saponin and saponin fractions, and Rb1, in proliferation, differentiation and myelination

  • Lee, Ahreum;Kwon, Oh Wook;Jung, Kwi Ryun;Song, Gyun Jee;Yang, Hyun-Jeong
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.104-114
    • /
    • 2022
  • Background: Abnormalities of myelin, which increases the efficiency of action potential conduction, are found in neurological disorders. Korean Red Ginseng (KRG) demonstrates therapeutic efficacy against some of these conditions, however effects on oligodendrocyte (OL)s are not well known. Here, we examined the effects of KRG-derived components on development and protection of OL-lineage cells. Methods: Primary OL precursor cell (OPC) cultures were prepared from neonatal mouse cortex. The protective efficacies of the KRG components were examined against inhibitors of mitochondrial respiratory chain activity. For in vivo function of Rb1 on myelination, after 10 days of oral gavage into adult male mice, forebrains were collected. OPC proliferation were assessed by BrdU incorporation, and differentiation and myelination were examined by qPCR, western blot and immunocytochemistry. Results: The non-saponin promoted OPC proliferation, while the saponin promoted differentiation. Both processes were mediated by AKT and extracellular regulated kinase (ERK) signaling. KRG extract, the saponin and non-saponin protected OPCs against oxidative stress, and both KRG extract and the saponin significantly increased the expression of the antioxidant enzyme. Among 11 major ginsenosides tested, Rb1 significantly increased OL membrane size in vitro. Moreover, Rb1 significantly increased myelin formation in adult mouse brain. Conclusion: All KRG components prevented OPC deaths under oxidative stress. While non-saponin promoted proliferation, saponin fraction increased differentiation and OL membrane size. Furthermore, among all the tested ginsenosides, Rb1 showed the biggest increase in the membrane size and significantly enhanced myelination in vivo. These results imply therapeutic potentials of KRG and Rb1 for myelin-related disorders.

Effects of Egg Yolk Antibodies Produced in Response to Different Antigenic Fractions of E. coli O157:H7 on E. coli Suppression

  • Chae, H.S.;Singh, N.K.;Ahn, C.N.;Yoo, Y.M.;Jeong, S.G.;Ham, J.S.;Kim, D.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권11호
    • /
    • pp.1665-1670
    • /
    • 2006
  • The objective of this research was to provide the characterization and method for producing anti-E. coli O157:H7 antibodies in egg-laying hens and to determine if the antibody can restrain the proliferation of E. coli O157:H7 in-vitro. Selected antigenic fractions (whole cell, outer membrane protein and lipopolysaccharide (LPS)) from E. coli O157:H7 were injected to hens in order to produce anti-E. coli O157:H7 antibodies. The immune response and the egg yolk antibodies of laying hens against the whole cell, outer membrane protein and LPS antigens were monitored by ELISA. The level of antibodies against whole cell antigen monitored through ELISA sharply increased after the initial immunization, and it was found to be maximum on day 49 however, the level was maintained up to day 70. Antibodies (5 mg/ml) directed against the whole cell inhibited E. coli proliferation 10-13 times more than outer membrane protein or LPS. The antibody response against the whole cell antigens appeared to have higher activity in restraining the proliferation of E. coli O157:H7 than antibody against outer membrane protein or LPS. Results reflected that increasing the IgY's in the egg yolk could prevent greater economic losses due to human and animal health from pathogenic bacteria i.e. E. coli O157:H7.