• Title/Summary/Keyword: Membrane formation

Search Result 1,094, Processing Time 0.037 seconds

SOLUTION CHARACTERISTICS AND MEMBRANE FORMATION OF PARTIALLY IMIDIZED POLY (AMIC ACID)

  • Lee, Hyuck-Jai;Won, Jong-Ok;Park, Hyun-Chae;Lee, Hoo-Sung;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.83-86
    • /
    • 1999
  • The imidization effect of a poly (amic acid) dope solution on membrane formation has been investigated. Poly (amic acid) solution in S-methyl-2-pyrrolidione hs been thermally imidized at $120^{\circ}C$ with different curing time and its degree of imidization was determined by infrared spectroscopy. The solution properties have been studied as a function of concentration and curing time by dynamic light scattering. The quality of a solvent was changed from good to poor with increasing imidization of poly(amic acid).The reduced polymer-solvent interaction diminishes the membrane formation time. The morphology of a membrane was able to be controlled by the characteristics of dope solution.

  • PDF

Exophytic bone formation using porous titanium membrane combined with pins in rabbit calvarium. (핀 고정 천공형 티타늄막을 이용한 수직적 체조제증대술에 관한 연구)

  • Kim, Young;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.273-288
    • /
    • 2006
  • The purpose of this study was to evaluate exophytically vertical bone formation in rabbit calvaria by the concept of guided bone regeneration with a custom-made porous titanium membrane combined with bone graft materials. For this purpose, a total of 12 rabbits were used, and decorticated calvaria were created with round carbide bur to promote bleeding and blood clot formation in the wound area. Porous titanium membranes (0.5 mm in pore diameter, 10 mm in one side, 2 mm in inner height) were placed on the decorticated calvaria, fixed with metal pins and covered with full-thickness flap. Experimental group I was treated as titanium membrane only. Experimental group II, III, IV was treated as titanium membrane with BBM, titanium membrane with DFDB and titanium membrane with FDB. The animals were sacrificed at 8 and 12 weeks after surgery, and new bone formation was assessed by histomorphometric as well as statistical analysis. 1. Porous titanium membrane was biocompatable and capable of maintaining the regeneration space. 2. At 8 and 12 weeks, all groups demonstrated exophytic bone formation and there was a statistical significant difference among different groups only at 12 weeks. 3. The DFDB group revealed the most new bone formation compared to other groups (p<0.05). 4. At 12 weeks, DFDB and FDB groups showed the most significant resorption of graft materials (p<0.05). 5. The BBM was not resorbed at all until 12 weeks. 6. The fixation metal pin revealed excellent effect in peripheral sealing. On the basis of these findings, we conclude that a porous titanium membrane may be used as an augmentation membrane for guided bone regeneration, and DFDB as an effective bone forming graft material. The fixation of the membrane with pin will be helpful in GBR technique. However, further study is required to examine their efficacy in the intraoral experiments.

Effects of membrane fouling formation by feed water quality and membrane flux in water treatment process using ceramic membrane (세라믹 막여과 정수처리 공정에서 유입수질 및 막여과유속이 막오염 형성에 미치는 영향)

  • Kang, Joon-Seok;Park, Seo-Gyeong;Lee, Jeong-Jun;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In this study, the effects of operating conditions on the formation of reversible and irreversible fouling were investigated in the filtration using ceramic membrane for water treatment process. The effect of coagulation pretreatment on fouling formation was also evaluated by comparing the performance of membrane filtration both with and without addition of coagulant. A resistance-in-series-model was applied for the analysis of membrane fouling. Total resistance (RT) and internal fouling resistance (Rf) increased in the membrane filtration process without coagulation as membrane flux and feed water concentrations increased. Internal fouling resistance, which was not recovered by physical cleaning, was more than 70% of the total resistance at the range of the membrane flux more than $5m^3/m^2{\cdot}day$. In the combined process with coagulation, the cake layer resistance (Rc) increased to about 30-80% of total resistance. As the cake layer formed by coagulation floc was easily removed by physical cleaning, the recovery rate by physical cleaning was 54~90%. It was confirmed from the results that the combined process was more efficient to recover the filtration performance by physical cleaning due to higher formation ratio of reversible fouling, resulted in the mitigation of the frequency of chemical cleaning.

Scale formation on vacuum membrane distillation for SWRO brine treatment (진공 막증류 공정의 스케일 막오염 형성에 관한 연구)

  • Hwang, Tae-Mun;Jang, Eun-Kyung;Nam, Sook-Hyun;Koo, Jae-Wuk;Kim, Eun-Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.311-319
    • /
    • 2017
  • Scale formation is inevitable problem when seawater is treated by vacuum membrane distillation. The reason is the high concentration of calcium ion($Ca^{2+}$), sulfate ion(${SO_4}^{2-}$) and bicarbonate ion(${HCO_3}^-$). These ions form calcium sulfate($CaSO_4$) and calcium carbonate($CaCO_3$) on the membrane. The scale formed on membrane has to be removed, because the flux can be severely reduced and membrane wetting can be incurred. This study was carried out to investigate scale formation and effectiveness of acid cleaning in vacuum membrane distillation for SWRO brine treatment. It was found that permeate flux gradually declined until volume concentration factor(VCF) reached around 1.55 and membrane wetting started over VCF over 1.6 in the formation of precipitates containing $CaSO_4$ during VMD operation. In contrast, when calcium carbonate formed on membrane, permeate flux was gradually reduced until VCF 3.0. The precipitates containing both $CaSO_4$ and $CaCO_3$ were formed on the membrane surface and in the membrane pore.

Influence of biodegradable polymer membrane on new bone formation and biodegradation of biphasic bone substitutes: an animal mandibular defect model study

  • Ku, Jeong-Kui;Kim, Young-Kyun;Yun, Pil-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.34.1-34.7
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the influence of biodegradable polycaprolactone membrane on new bone formation and the biodegradation of biphasic alloplastic bone substitutes using animal models. Materials and methods: In this study, bony defect was formed at the canine mandible of 8 mm in diameter, and the defects were filled with Osteon II. The experimental groups were covered with Osteoguide as barrier membrane, and the control groups were closed without membrane coverage. The proportion of new bone and residual bone graft material was measured histologically and histomorphometrically at postoperative 4 and 8 weeks. Results: At 4 weeks, the new bone proportion was similar between the groups. The proportion of remaining graft volume was 27.58 ± 6.26 and 20.01 ± 4.68% on control and experimental groups, respectively (P < 0.05). There was no significant difference between the two groups in new bone formation and the amount of residual bone graft material at 8 weeks. Conclusion: The biopolymer membrane contributes to early biodegradation of biphasic bone substitutes in the jaw defect but it does not affect the bone formation capacity of the bone graft.

GUIDED BONE REGENERATION OF CALVARIAL BONE DEFECTS USING BIOABSORBABLE MEMBRANE AND DEMINERALIZED FREEZE DRIED BONE IN RATS (백서에서 흡수성막과 탈회동결건조골을 이용한 두개골결손부의 골재생)

  • Kim, Soo-Min;Yeo, Hwan-Ho;Kim, Su-Gwan;Lim, Sung-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.290-301
    • /
    • 2002
  • The purpose of this study was to evaluate new bone formation and healing process in rat calvarial bone defects using $BioMesh^{(R)}$. membrane and DFDB. Forty eight rats divided equally into 4 groups of 1 control group and 3 experimental groups. Standardized transosseous circular calvarial defects (8 mm in diameter) were made midparietally. In the control group, the defect was only covered with the soft tissue flap. In the experimental group 1, it was filled with DFDB only, in the experimental group 2, it was covered $BioMesh^{(R)}$. membrane only, and in the experimental group 3, it was filled DFDB and covered with membrane. At the postoperative 1, 2, 4, 8 weeks, rats were sacrificed and histologic and histomorphometric analysis were performed. These results were as follows. In histomorphometric analysis, It showed the greatest amount of new bone formation through experimental in the experimental group 3 (P<0.001). The amount of new bone formation at the central portion of the defect was greater in the experimental group 3 than experimental group 2. $BioMesh^{(R)}$. membrane began to resorb at 1 week and resorbed almost completely at 8 weeks after operation. The collapse of membrane into the defect was observed through the experimental periods in the experimental group 2. In the area of collapsed membrane, new bone formation was restricted. These results suggest that maintenance of some space for new bone to grow is required in the use of $BioMesh^{(R)}$. membrane alone in the defect. It is also thought that use of the membrane may promote new bone growth in DFDB graft.

Effects of various foulants on flux changes in membrane distillation process (막증류 공정에서 오염 인자가 플럭스 변화에 미치는 영향)

  • Park, Chansoo;Lee, Chang-Kyu;Kim, Jong-oh;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.327-334
    • /
    • 2016
  • The effects of dissolved inorganic and organic matter in seawater and the characteristics of fouling on the membrane surface were investigated within membrane distillation (MD) process. The changes of the membrane flux of PE and PVDF hollow fiber membranes under natural and synthetic seawater were compared with given variances of temperature. The flux of both membranes under the synthetic seawater, without any organic matter, were higher than that of the natural seawater, indicating the organic fouling on the membrane surface. The surface of the membrane was analyzed using scanning electron microscope (SEM) to examine the fouling. The experiment with organics has shown the formation of thin film over the membrane surface, while the experiment with inorganics has shown only the formation of inorganic crystals. The results indicated the organic matter as the major foulants and that the organics affected the formation of the crystals. Permeate water conductivity of all conditions verified the quality of the water to be better if not similar to that of RO.

Prepartion and Microstructure Changes with Swelling of Polyion Complex membranes Based on the K-Carrageenan

  • Jegal, Jonggeon;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.61-62
    • /
    • 1994
  • In order to prepare polyion complex membranes useful for the separation of water-alcohol by pervaporation, k-carrageenan containing artionic sulfate groups in the backbone and good hydrophilicity was selected for the polyanion membrane material and poly{1,3-bis[4-butyl pyridinium] propane. bromide}, one of the polycations synthesized in our lab and containing cationic pyridinium groups., was used. The polyion complex membranes were prepared by the ion complex formation between kcarrageenan films and poly{1,3-bis[4-butyl pyridinium] propane. bromide}. On the formation process of polyion complex membranes, the way of potyion complex formation was carefully studied. In order to study the effect of the morphology on the permeation properties of the polyion complex membranes, which is one of the important factors affecting on the permeation properties of membranes but rarely studied, the microstructure behaviors of the polyion complex mem6ranes in methanol-water mixtures with different compositions Were also studied with x-ray diffractometry and polarizing microscopy.

  • PDF

The effect of early membrane exposure on exophytic bone formation using perforated titanium membrane (천공형 티타늄 막의 조기 노출이 수직 골 형성에 미치는 영향)

  • Kim, Eun-Jung;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.2
    • /
    • pp.237-249
    • /
    • 2007
  • This study was performed to evaluate the effect of membrane exposure on new bone formation when guided bone regeneration with perforated titanium membrane on atrophic alveolar ridge. The present study attempted to establish a GBR model for four adult beagle dog premolar. Intra-marrow penetration defects were created on the alveolar ridge(twelve weeks after extraction) on the mandibular premolar teeth in the beagle dogs. Space providing perforated titanium membrane with various graft material were implanted to provide for GBR. The graft material were demineralized bovine bone(DBB), Irradiated cancellous bone(ICB) and demineralized human bone powder(DFDB). The gingival flap were advanced to cover the membranes and sutured. Seven sites experienced wound failure within 2-3weeks postsurgery resulting in membrane exposure. The animals were euthanized at 4 weeks postsurgery for histologic and histometric analysis. The results of this study were as follows: 1. There was little new bone formation at 4 weeks postsurgery. irrespectively of membrane exposure. 2. There was significant relationship between membrane exposure and bone graft resorption(P<0.05), but no relation between membrane exposure and infiltrated connective tissue. 3. There was much bone graft resorption on DFDB than ICB and DBB. 4. The less exposure was on the perforated titanium membrane, the more dense infiltrated connective tissue was filled under the membrane when grafted with ICB and DBB. but there was no relationship between the rate of membrane exposure and the percentage of infiltrated connective tissue area and no relationship between the percentage of the area in the infiltrated connective tissue and in the residual bone graft. Within the above results, bone formation may be inhibited when membrane was exposed and ICB and DBB were more effective than DFDB as a bone graft material when guided bone regeneration.